Uniqueness for the harmonic map flow in two dimensions

  • Alexandre Freire


LetM be a two-dimensional Riemannian manifold with smooth (possibly empty) boundary. Ifu andv are weak solutions of the harmonic map flow inH1(M×[0,T]; SN) whose energy is non-increasing in time and having the same initial data u0 ε H1(M,SN) (and same boundary values γ εH3/2(∂M; SN) if ∂M; SN ≠Ø) thenu=v.

Mathematics subject classification

35K55 58E20 58G11 (1991) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Struwe: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv.60, (1985) 558–551Google Scholar
  2. 2.
    K.C. Chang: Heat flow and boundary value problem for harmonic maps. Ann. Inst. Henri Poincaré6 (1989) 363–396Google Scholar
  3. 3.
    T. Rivière: Flot des applications harmoniques en dimension deux. (preprint ENS-Cachan 1993)Google Scholar
  4. 4.
    F. Hélein: Régularité des applications faiblement harmoniques entre une surface et une sphère. C.R.A.S Paris311 (1990) 519–524Google Scholar
  5. 5.
    P. Gilkey: Invariance Theory, the heat equation and the Atiyah-Singer index theorem. Publish or Perish, Inc. 1984Google Scholar
  6. 6.
    P. Grisvard: Equations différentielles abstraites. Ann. Sc. ENS2 (1969) 311–395Google Scholar
  7. 7.
    J.L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications. Vol. 2, Paris: DunodGoogle Scholar
  8. 8.
    H. Wente: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl.26 (1969) 318–344Google Scholar
  9. 9.
    H. Brezis, J.M. Coron: Multiple solutions of H-systems and Rellich's conjecture. Comm. Pure Appl. Math.37 (1984) 149–188Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Alexandre Freire
    • 1
  1. 1.Department of MathematicsUniversity of TennesseeKnoxvilleUSA

Personalised recommendations