Acta Mechanica

, Volume 68, Issue 3–4, pp 185–191

A uniqueness theorem for compressible micropolar flows

  • C. V. Easwaran
  • S. R. Majumdar
Contributed Papers


Using an energy integral method it is proved that the motion of a non-heat conducting compressible micropolar fluid in a bounded regionV=V(t) is uniquely determined by the initial distributions of velocity, microrotation, density and temperature, together with certain boundary conditions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cowin, S. C.: The theory of polar fluids. Advances in Applied Mechanics14, 279–347 (1974).Google Scholar
  2. [2]
    Eringen, A. C.: Theory of micropolar fluids. J. Math. Mech.16, 1–18 (1966).Google Scholar
  3. [3]
    Ariman, T., Turk, M. A., Sylvester, N. D.: Microcontinuum fluid mechanics — A review. Int. J. Engng. Sc.11, 905–930 (1973).Google Scholar
  4. [4]
    Serrin, J.: On the uniqueness of compressible fluid motions. Arch. Rational Mech. Anal.3, 271–288 (1959).Google Scholar
  5. [5]
    Ramkissoon, H.: Boundary value problems in microcontinuum fluid mechanics. Quart. Appl. Math.42, 129–141 (1984).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • C. V. Easwaran
    • 1
  • S. R. Majumdar
    • 1
  1. 1.Department of Mathematics and StatisticsThe University of CalgaryCalgaryCanada

Personalised recommendations