algebra universalis

, Volume 33, Issue 3, pp 294–318 | Cite as

Independence algebras

  • V. Gould
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Clifford, A. H. and Preston, G. B.,The algebraic theory of semigroups, Vol. 1, Math. Surveys of the American Math. Soc.7 (1967), Providence, R.I.Google Scholar
  2. [2]
    Doss, C. G.,Certain equivalence relations in transformation semigroups, M.A. Thesis, University of Tennessee, 1955.Google Scholar
  3. [3]
    Erdös, J. A.,On products of idempotent matrices, Glasgow Math. J.8 (1967), 118–122.Google Scholar
  4. [4]
    Fountain, J. B. and Lewin, A. M.,Products of idempotent endomorphisms of an independence algebra of finite rank, Proc. Edinburgh Math. Soc.35 (1992), 493–500.Google Scholar
  5. [5]
    Grätzer, G.,Universal Algebras, D. Van Nostrand Company, Inc., 1968.Google Scholar
  6. [6]
    Hewitt, E. and Zuckerman, H. S.,The irreducible representations of a semigroup related to the symmetric group, Illinois J. Math.1 (1957), 188–213.Google Scholar
  7. [7]
    Howie, J. M.,The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc.41 (1966), 707–716.Google Scholar
  8. [8]
    Howie, J. M.,An Introduction to Semigroup Theory, Academic Press, London, 1976.Google Scholar
  9. [9]
    Lewin, A. M.,Idempotent generated subsemigroups of endomorphism monoids of universal algebras, D. Phil. Thesis, University of York, 1991.Google Scholar
  10. [10]
    McKenzie, R. N., McNulty, G. F. and Taylor, W. T.,Algebra, Lattices, Varieties Vol. 1, Wadsworth and Brooks/Cole Advanced Books and Software, Monterey, 1983.Google Scholar
  11. [11]
    Petrich, M.,Rings and Semigroups, Lecture Notes in Mathematics 380, Springer-Verlag.Google Scholar
  12. [12]
    Rees, D.,On semi-groups, Proc. Cambridge Phil. Soc.36 (1940), 387–400.Google Scholar
  13. [13]
    Reynolds, M. A. and Sullivan, R. P.,Products of idempotent linear transformations, Proc. Royal Soc. Edinburgh A100 (1985), 123–138.Google Scholar
  14. [14]
    Suschkewitsch, A.,Theory of Generalized Groups, Gos. Nauk.-Tekh. Izd. Ukranii, Kharkow, 1937.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • V. Gould
    • 1
  1. 1.University of YorkHeslingtonEngland

Personalised recommendations