Brain Topography

, Volume 9, Issue 3, pp 203–217 | Cite as

Mapping EEG-potentials on the surface of the brain: A strategy for uncovering cortical sources

  • Markus Junghöfer
  • Thomas Elbert
  • Paul Leiderer
  • Patrick Berg
  • Brigitte Rockstroh
Article

Summary

This paper describes a uniform method for calculating the interpolation of scalp EEG potential distribution, the current source density (CSD), the cortical potential distribution (cortical mapping) and the CSD of the cortical potential distribution. It will be shown that interpolation and deblurring methods such as CSD or cortical mapping are not independent of the inverse problem in potential theory. Not only the resolution but also the accuracy of these techniques, especially those of deblurring, depend greatly on the spatial sampling rate (i.e., the number of electrodes). Using examples from simulated and real (64 channels) data it can be shown that the application of more than 100 EEG channels is not only favourable but necessary to guarantee a reasonable accuracy in the calculations of CSD or cortical mapping. Likewise, it can be shown that using more than 250 electrodes does not improve the resolution.

Key words

High spatial sampling EEG Spatial deblurring Current source density Cortical Mapping Spherical spline interpolation Inverse problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcaini, M., Giard, M.H., Thevenet, M. and Pernier, J. Dissociation of two frontal components in the N1 wave of the human auditory evoked response Psychophysiol., 1994, 31: 611–615.Google Scholar
  2. Böhmer K. Spline-Funktionen. B.G. Teubner Stuttgart, 1974.Google Scholar
  3. Braun C., Lutzenberger W., Miltner W., Elbert T. Can subcortical structures generate potentials large in amplitude? In: Brunia, C.H.M., Gaillard, A.W.K., Kok, A., eds. Psychophysiological Brain Research, Vol.1. Tilburg, Tilburg University Press, 1990, pp. 31–35.Google Scholar
  4. Cuffin, B.N. and Cohen, D. Comparison of the magnetoencephalogram and electroencephalogram. Electroenceph. clin. Neurophysiol., 1979, 47:132–146.Google Scholar
  5. Freeden, W. On Spherical Spline Interpolation and Approximation. Math. Meth. in the Appl. Sciences, 1981, 3: 551–575.Google Scholar
  6. Gevins, A., Jian, L., Brickett, P., Reutter, B., and Desmond, J. Seeing through the skull: advanced EEGs accurately measure cortical activity from the scalp. Brain Topography, 1991, 4:125–132Google Scholar
  7. Gevins, A., Jian, L., Martin, N.K., Brickett, P., Desmond, J., and Reutter, B. High resolution EEG: 124-channel recording spatial deblurring and MRI integration methods. Electroencph. Clin. Neurophysiol., 1994, 90: 337–358.Google Scholar
  8. Giard, M.H., Perrin, F., Echallier, J.F., Thevenet, M., Froment, J.C. and Pernier, J. Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis. Electroenceph. clin. Neurophysiol., 1994, 92: 238–252.Google Scholar
  9. Gonzalez, S., Grave de Peralta, R., Lütkenhöner B., Menninghaus, E., and Hoke, M. A strategy for the soultion of the inverse problem using simultaneous EEG and MEG measurements. In Hoke, M., Okada, Y., Erné, S.N., Romani, G.L. (eds.): Advances in Biomagnetism'91: Clinical Aspects. Elsevier, Amsterdam, 1991: 99–100.Google Scholar
  10. Nuñez, P.L., Silberstein, R.B., Cadusch, P.J., and Wijensinghe, R.S. Comparison of high resolution methods having different theoretical bases. Brain Topography, 1993, 5(4): 361–364.Google Scholar
  11. Nuñez, P.L., Silberstein, R.B., Cadusch, P.J., Wijensinghe, R.S., Westdorp, A.F., and Srinivasan, R. A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroenceph. Clin. Neurophysiol., 1994, 90: 40–57.Google Scholar
  12. Perrin, F., Bertrand, O., and Pernier, J. Scalp current density mapping: value and estemationnfrom potential data. IEEE Transactions on Biomedical Engineering, 1987, 34(4): 283–289.Google Scholar
  13. Perrin, F., Pernier, J., Bertrand, O., and Echallier, J.F. Spherical splines for potential and current density mapping. Electroenc. Clin. Neurophys., 1989, 72: 184–187.Google Scholar
  14. Sakatow, P.S. Lehrbuch der höheren GeodÄsie. VEB Verlag Technik Berlin, 1957.Google Scholar
  15. Schoenberg, I.J. On trigonometric spline interpolation. J. Math. Mech. 13, 1964: 795–825.Google Scholar
  16. Wahba, G. Spline Interpolation and Smoothing on the Sphere, SIAM, J. Sci. Stat. Comput, 1991, 2(1): 5–16.Google Scholar
  17. Yamashita, Y. Theoretical studies on the inverse problem in electrocardiography and the uniqueness of the solution. IEEE Trans. Biomed. Eng. 1982, 29: 719–724.78.Google Scholar
  18. Yamashita, Y. and Takahashi T. Use of the finite element method to determine epicardial from body surface potentials under a realistic torso model. IEEE Trans. Biomed. Eng. 1984, 31: 611–621.Google Scholar

Copyright information

© Human Sciences Press, Inc. 1997

Authors and Affiliations

  • Markus Junghöfer
    • 1
  • Thomas Elbert
    • 1
  • Paul Leiderer
    • 1
  • Patrick Berg
    • 1
  • Brigitte Rockstroh
    • 1
  1. 1.Department of Psychology and Department of PhysicsUniversity of KonstanzGermany
  2. 2.Psychology DepartmentUniversity of KonstanzKonstanzGermany

Personalised recommendations