, Volume 9, Issue 6, pp 518–533 | Cite as

Computing the intersection-depth of polyhedra

  • David Dobkin
  • John Hershberger
  • David Kirkpatrick
  • Subhash Suri


Given two intersecting polyhedraP, Q and a directiond, find the smallest translation ofQ alongd that renders the interiors ofP andQ disjoint. The same problem can also be posed without specifying the direction, in which case the minimum translation over all directions is sought. These are fundamental problems that arise in robotics and computer vision. We develop techniques for implicitly building and searching convolutions and apply them to derive efficient algorithms for these problems.

Key words

Intersection Minkowski sum Plane sweep Ray shooting Polyhedral hierarchy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Agarwal. Ray shooting and other applications of spanning trees with low stabbing number.Proc. 5th ACM Symposium on Computational Geometry, pp. 315–325, 1989.Google Scholar
  2. [2]
    A. Aggarwal, L. Guibas, J. Saxe, and P. Shor. A linear time algorithm for computing the Voronoi diagram of a convex polygon.Discrete and Computational Geometry, 4:591–604, 1989.Google Scholar
  3. [3]
    T. Asano. An efficient algorithm for finding the visibility polygons for a polygonal region with holes.Transactions of IECE of Japan, E-68:557–559, 1985.Google Scholar
  4. [4]
    B. S. Baker, S. F. Fortune, and S. R. Mahaney. Polygon containment under translation.Journal of Algorithms, 532–548, 1986.Google Scholar
  5. [5]
    J. Bentley and T. A. Ottman. Algorithms for reporting and counting geometric intersections.IEEE Transactions on Computers, 28:643–647, 1979.Google Scholar
  6. [6]
    C. E. Buckley and L. J. Leifer. A proximity metric for continuum path planning.Proc. 9th International Joint Conference on Artificial Intelligence, pp. 1096–1102, 1985.Google Scholar
  7. [7]
    S. A. Cameron and R. K. Culley. Determining the minimum translation distance between two convex polyhedra.Proc. IEEE International Conference on Robotics and Automation, pp. 591–596, 1986.Google Scholar
  8. [8]
    B. Chazelle. Efficient polygon triangulation.Proc. IEEE Symposium on Foundations of Computer Science, pp. 220–230, 1990.Google Scholar
  9. [9]
    B. Chazelle and D. Dobkin. Intersection of convex objects in two and three dimensions.Journal of the Association for Computing Machinery, 34:1–27, 1987.Google Scholar
  10. [10]
    F. Chin and C. A. Wang. Optimal algorithms for the intersection and the minimum distance problems between planar polygons.IEEE Transactions on Computers, 32:1203–1207, 1983.Google Scholar
  11. [11]
    D. Dobkin and D. Kirkpatrick. Fast detection of polyhedral intersections.Proc. ICALP '82, pp. 154–165. Lecture Notes in Computer Science, Vol. 140. Springer-Verlag, Berlin, 1982.Google Scholar
  12. [12]
    D. Dobkin and D. Kirkpatrick. A linear algorithm for determining the separation of convex polyhedra.Journal of Algorithms, 6:381–392, 1985.Google Scholar
  13. [13]
    D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed polyhedra—a unified approach.Proc. ICALP '90, pp. 400–413. Lecture Notes in Computer Science, Vol. 443. Springer-Verlag, Berlin, 1990.Google Scholar
  14. [14]
    H. Edelsbrunner. Computing the extreme distances between two convex polygons.Journal of Algorithms, 6:213–224, 1985.Google Scholar
  15. [15]
    H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.SIAM Journal on Computing, 15:317–340, 1986.Google Scholar
  16. [16]
    H. El Gindy and D. Avis. A linear algorithm for computing the visibility polygon from a point.Journal of Algorithms, 2:186–197, 1981.Google Scholar
  17. [17]
    M. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan. Triangulating a simple polygon.Information Processing Letters, 7:175–179, 1978.Google Scholar
  18. [18]
    B. Grünbaum.Convex Polytopes. Wiley, New York, 1967.Google Scholar
  19. [19]
    L. Guibas, M. Overmars, and M. Sharir. Intersecting line segments, ray shooting, and other applications of geometric partitioning techniques. InProc. First Scandinavian Workshop on Algorithm Theory, pp. 64–73. Lecture Notes in Computer Science, Vol. 318. Springer-Verlag, Berlin, 1988.Google Scholar
  20. [20]
    L. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational geometry.Proc. 24th Foundations of Computer Science, pp. 100–111, Nov. 1983.Google Scholar
  21. [21]
    L. J. Guibas and J. Stolfi. Ruler, compass, and computer: The design and analysis of geometric algorithms. Research Report 37, DEC Systems Research Center, 1989. Also appeared inTheoretical Foundations of Computer Graphics and CAD, pp. 111–165, Springer-Verlag, New York.Google Scholar
  22. [22]
    J. Hershberger and L. Guibas. AnO(n2) shortest path algorithm for a nonrotating convex body.Journal of Algorithms, 9:18–46, 1988.Google Scholar
  23. [23]
    S. Hertel and K. Mehlhorn.Fast Triangulation of Simple Polygons, pp. 207–218. Lecture Notes in Computer Science, Vol. 158. Springer-Verlag, Berlin, 1983.Google Scholar
  24. [24]
    K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles.Discrete and Computational Geometry, 1:59–71, 1986.Google Scholar
  25. [25]
    S. S. Keerthi and K. Sridharan. Efficient algorithms for computing two measures of depth of collision between convex polygons. Technical Report, Department of Computer Science and Automation, IIS, Banglore, 1989.Google Scholar
  26. [26]
    D. Kirkpatrick. Optimal search in planar subdivisions.SIAM Journal on Computing, 12:28–35, 1983.Google Scholar
  27. [27]
    K. Mehlhorn.Multi-dimensional Searching and Computational Geometry. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1984.Google Scholar
  28. [28]
    T. A. Ottman, P. Widmeyer, and D. Wood. A fast algorithm for Boolean mask operations. Report No. 112, Institüt für Angewandte Mathematik und Formale Beschreibungsverfahren, W-7500 Karlsruhe, 1982.Google Scholar
  29. [29]
    F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.Google Scholar
  30. [30]
    S. Suri and J. O'Rourke. Worst-case optimal algorithms for constructing visibility polygons with holes.Proc. 2nd ACM Symposium on Computational Geometry, pp. 14–23, 1986.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • David Dobkin
    • 1
    • 2
  • John Hershberger
    • 3
  • David Kirkpatrick
    • 4
  • Subhash Suri
    • 5
  1. 1.Department of Computer SciencePrinceton UniversityUSA
  2. 2.Bell Communications ResearchMorristownUSA
  3. 3.DEC Systems Research CenterPalo AltoUSA
  4. 4.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada
  5. 5.Bell Communications ResearchMorristownUSA

Personalised recommendations