Advertisement

Archiv der Mathematik

, Volume 57, Issue 2, pp 122–132 | Cite as

On modules with finite uniform and Krull dimension

  • Dinh van Huynh
  • Nguyen Viet Dung
  • Robert Wisbauer
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. W. Chatters, A characterization of right Noetherian rings. Quart. J. Math. Oxford33, 65–69 (1982).Google Scholar
  2. [2]
    Nguyen V.Dung, Some conditions for a self-injective ring to be quasi-Frobenius. Studia Sci. Math. Hungar.24 (1989).Google Scholar
  3. [3]
    V. K. Goel, S. K. Jain andS. Singh, Rings whose cyclic modules are injective or projective. Proc. Amer. Math. Soc.53, 16–18 (1975).Google Scholar
  4. [4]
    R.Gordon and J. C.Robson, Krull Dimension. Mem. Amer. Math. Soc.133 (1973).Google Scholar
  5. [5]
    Dinh van Huynh, A Generalization of RightPCI Rings. Comm. Algebra18, 607–614 (1990).Google Scholar
  6. [6]
    Dinh van Huynh andPhan Dân, On rings with restricted minimum condition. Arch. Math.51, 313–326 (1988).Google Scholar
  7. [7]
    Dinh van Huynh andNguyen V. Dung, A Characterization of Artinian Rings. Glasgow Math. J.30, 67–73 (1988).Google Scholar
  8. [8]
    Dinh van Huynh, Nguyen V. Dung andP. F. Smith, A characterization of rings with Krull dimension. J. Algebra130, 104–112 (1990).Google Scholar
  9. [9]
    Dinh van Huynh, Nguyen V. Dung andR. Wisbauer, Quasi-injective modules withacc ordcc on essential submodules. Arch. Math.53, 252–255 (1989).Google Scholar
  10. [10]
    Dinh van Huynh andP. F. Smith, Some rings characterized by their modules. Comm. Algebra,18, 1971–1988 (1990).Google Scholar
  11. [11]
    Dinh van Huynh andR. Wisbauer, A characterization of Locally Artinian Modules. J. Algebra,132, 287–293 (1990).Google Scholar
  12. [12]
    B. Osofsky, Rings all of whose finitely generated modules are injective. Pacific J. Math.14, 645–650 (1964).Google Scholar
  13. [13]
    B.Osofsky and P.Smith, Cyclic modules whose quotients have complements direct summands. J. Algebra, to appear.Google Scholar
  14. [14]
    P. F. Smith, Rings characterized by their cyclic modules. Canad. J. Math.31, 93–111 (1979).Google Scholar
  15. [15]
    P. F. Smith, Dinh van Huynh andNguyen V. Dung, A characterization of noetherian modules. Quart. J. Math. Oxford41, 225–235 (1990).Google Scholar
  16. [16]
    H. Tominaga, Ons-unital rings. Math. J. Okayama Univ.18, 117–134 (1976).Google Scholar
  17. [17]
    R.Wisbauer, Grundlagen der Modul- und Ringtheorie. München 1988.Google Scholar
  18. [18]
    R.Wisbauer, Generalized Co-Semisimple Modules. Comm. Algebra, to appear.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • Dinh van Huynh
    • 1
  • Nguyen Viet Dung
    • 1
  • Robert Wisbauer
    • 2
  1. 1.Institute of MathematicsBoHo HanoiVietnam
  2. 2.Mathematisches InstitutUniversität Düsseldorf UniversitätstrDüsseldorf

Personalised recommendations