Advertisement

Archiv der Mathematik

, Volume 47, Issue 5, pp 422–426 | Cite as

Ungleichungen für Mittelwerte

  • Horst Alzer
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    H. Alzer, Ungleichungen für (e/a)a(b/e)b. Elem. Math.40, 120–123 (1985).Google Scholar
  2. [2]
    H.Alzer, Über Mittelwerte, die zwischen dem geometrischen und dem logarithmischen Mittel zweier Zahlen liegen. Erscheint im Anzeiger der Österr. Akad. Wiss.Google Scholar
  3. [3]
    F. Burk, By all means. Amer. Math. Monthly92, 50 (1985).Google Scholar
  4. [4]
    B. C. Carlson, Some inequalities for hypergeometric functions. Proc. Amer. Math. Soc.17, 32–39 (1966).Google Scholar
  5. [5]
    B. C. Carlson, The logarithmic mean. Amer. Math. Monthly79, 615–618 (1972).Google Scholar
  6. [6]
    E. L. Dodd, Some generalizations of the logarithmic mean and of similar means of two variates which become indeterminate when the two variates are equal. Ann. Math. Stat.12, 422–428 (1971).Google Scholar
  7. [7]
    N. D.Kazarinoff, Analytic inequalities. New York 1961.Google Scholar
  8. [8]
    E. B. Leach andM. C. Sholander, Extended mean values. Amer. Math. Monthly85, 84–90 (1978).Google Scholar
  9. [9]
    E. B. Leach andM. C. Sholander, Extended mean values II. J. Math. Anal. Appl.92, 207–223 (1983).Google Scholar
  10. [10]
    T. P. Lin, The power mean and the logarithmic mean. Amer. Math. Monthly81, 879–883 (1974).Google Scholar
  11. [11]
    D. S.Mitrinović, Analytic inequalities. Berlin-Heidelberg-New York 1970.Google Scholar
  12. [12]
    B. Ostle andH. L. Terwilliger, A comparison of two means. Proc. Montana Acad. Sci.17, 69–70 (1957).Google Scholar
  13. [13]
    A. O. Pittenger, Inequalities between arithmetic and logarithmic means. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz.680, 15–18 (1980).Google Scholar
  14. [14]
    A. O. Pittenger, The logarithmic mean inn variables. Amer. Math. Monthly92, 99–104 (1985).Google Scholar
  15. [15]
    G.Polyá and G.Szegö, Isoperimetric inequalities in mathematical physics. Princeton 1951.Google Scholar
  16. [16]
    K. B. Stolarsky, Generalizations of the logarithmic mean. Math. Mag.48, 87–92 (1975).Google Scholar
  17. [17]
    G. Székely, A classification of means. Ann. Univ. Sci. Budapest. Eötvös Sect. Math.18, 129–133 (1975).Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • Horst Alzer
    • 1
  1. 1.Waldbröl

Personalised recommendations