Applied Mathematics and Optimization

, Volume 32, Issue 1, pp 47–72 | Cite as

Consistent parameter estimation for partially observed diffusions with small noise

  • M. R. James
  • F. Le Gland


In this paper we provide a consistency result for the MLE for partially observed diffusion processes with small noise intensities. We prove that if the underlying deterministic system enjoys an identifiability property, then any MLE is close to the true parameter if the noise intensities are small enough. The proof uses large deviations limits obtained by PDE vanishing viscosity methods. A deterministic method of parameter estimation is formulated. We also specialize our results to a binary detection problem, and compare deterministic and stochastic notions of identifiability.

Key words

Parameter estimation Nonlinear filtering Large deviations 

AMS classification

62F12 93E10 93E11 60F10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baras, J. S., and La Vigna, A. (1987), Real-time sequential hypothesis testing for diffusion signals, Proc. 26th IEEE CDC, Los Angeles, 1987, pp. 1153–1157, IEEE Press, New York.Google Scholar
  2. 2.
    Barles, G., and Perthame, B. (1987), Discontinuous solutions of deterministic optimal stopping time problems, Modél. Math. Anal. Numér. 21:557–579.Google Scholar
  3. 3.
    Campillo, F., and Le Gland, F. (1989), MLE for partially observed diffusions: direct maximization vs. the EM algorithm, Stochastic Process. Appl. 33:245–274.Google Scholar
  4. 4.
    Clark, J. M. C. (1978), The design of robust approximations to the stochastic differential equations of non-linear filtering, in: Communication Systems and Random Processes Theory (ed. J. K. Skwirzynski), pp. 721–734, Sijthoff and Nordhoff, Alphen aan den Rijn.Google Scholar
  5. 5.
    Crandall, M. G., Evans, L. C., and Lions, P. L. (1984), Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282:487–502.Google Scholar
  6. 6.
    Crandall, M. G., and Lions, P. L. (1983), Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277:1–42.Google Scholar
  7. 7.
    Davis, M. H. A. (1980), On a multiplicative functional transformation arising in non-linear filtering theory, Z. Wahrsch. Verw. Gebiete 54:125–139.Google Scholar
  8. 8.
    Dembo, A., and Zeitouni, O. (1986), Parameter estimation of partially observed continuous-time stochastic processes via the EM algorithm, Stochastic Process. Appl. 23:91–113.Google Scholar
  9. 9.
    Elliott, R. J. (1982), Stochastic Calculus and Applications, Springer-Verlag, New York.Google Scholar
  10. 10.
    Evans, L. C., and Ishii, H. (1985), A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire 2:1–20.Google Scholar
  11. 11.
    Fleming, W. H., and Mitter, S. K. (1982), Optimal control and nonlinear filtering for nondegenerate diffusion processes, Stochastics 8:63–77.Google Scholar
  12. 12.
    Freidlin, M. I., and Wentzell, A. D. (1984), Random Perturbations of Dynamical Systems, Springer-Verlag, New York.Google Scholar
  13. 13.
    Friedman, A. V. (1964), Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  14. 14.
    Hijab, O. (1984), Asymptotic Bayesian estimation of a first order equation with small diffusion, Ann. Probab. 12:890–902.Google Scholar
  15. 15.
    James, M. R. (1988), Asymptotic Nonlinear Filtering and Large Deviations with Application to Observer Design, Ph.D. Dissertation, University of Maryland (SRC Technical Report PhD-88-1, Systems Research Center).Google Scholar
  16. 16.
    James, M. R. (1991), Finite time observer désign by probabilistic-variational methods, SIAM J. Control Optim. 29:954–967.Google Scholar
  17. 17.
    James, M. R., and Baras, J. S. (1988), Nonlinear filtering and large deviations: a PDE-control theoretic approach, Stochastics 23:391–412.Google Scholar
  18. 18.
    Pardoux, E. (1991), Filtrage non-linéaire et équations aux dérivées partielles stochastiques associées, in: Ecole d'Eté de Probabilités de Saint-Flour XIX, 1989 (ed. P. L. Hennequin), pp. 69–163 (LNM, 1464), Springer-Verlag, New York.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • M. R. James
    • 1
  • F. Le Gland
    • 2
  1. 1.Department of Systems EngineeringAustralian National UniversityCanberraAustralia
  2. 2.Institut de Recherche en Informatique et Systèmes Aléatoires, Institut National de Recherche en Informatique et en AutomatiqueRennes CédexFrance

Personalised recommendations