Journal of Neurocytology

, Volume 17, Issue 4, pp 573–580 | Cite as

The microglial cytoskeleton: vimentin is localized within activated cellsin situ

  • Manuel B. Graeber
  • Wolfgang J. Streit
  • Georg W. Kreutzberg


Unlike astrocytes and oligodendrocytes, microglia are extremely plastic making them the chameleon among the glial cells in the CNS. This great mutability of the microglial cell shape suggests the presence of an elaborate cytoskeleton which is demonstrated here by applying a new ultrastructural method. Electron microscopic immunocytochemistry shows the presence of vimentin at intermediate filament sites in reactive microglia stimulated by rat facial nerve axotomy. It is suggested that vimentin-expression may serve as a marker for activated states of microglia, including brain macrophages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bignami, A., Eng, L. F., Dahl, D. &Uyeda, C. T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence.Brain Research 43, 429–35.PubMedGoogle Scholar
  2. Blinzinger, K. &Kreutzberg, G. (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells.Zeitschrift für Zellforschung und mikroskopische Anatomie 85, 145–57.Google Scholar
  3. Cammermeyer, J. (1965) Juxtavascular karyokinesis and microglia cell proliferation during retrograde reaction in the mouse facial nucleus.Ergebnisse der Anatomie und Entwicklungsgeschichte 38, 1–22.PubMedGoogle Scholar
  4. Causton, B. E. (1984) The choice of resins for electron immunocytochemistry. InImmunolabelling for Electron Microscopy (edited byPolar, J. M. &Varndell, I. M.), pp. 29–36. Amsterdam: Elsevier.Google Scholar
  5. Dickson, D. W. (1986) Multinucleated giant cells in acquired immunodeficiency syndrome encephalopathy.Archives of Pathology and Laboratory Medicine 110, 967–8.PubMedGoogle Scholar
  6. Duchen, L. W. (1984) General pathology of neurons and neuroglia. InGreenfield's Neuropathology (edited byAdams, J. H., Corsellis, J. A. N. &Duchen, L. W.), pp. 1–52. London: Edward Arnold.Google Scholar
  7. Franke, W. W., Schmid, E., Grund, C. &Geiger, B. (1982) Intermediate filament proteins in nonfilamentous structures: transient disintegration and inclusion of subunit proteins in granular aggregates.Cell 30, 103–13.PubMedGoogle Scholar
  8. Frei, K., Siepl, C., Groscurth, P., Bodmer, S., Schwerdel, C. &Fontana, A. (1987) Antigen presentation and tumor cytotoxicity by interferon-γ-treated microglial cells.European Journal of Immunology 17, 1271–8.Google Scholar
  9. Geiger, B. (1987) Intermediate filaments: looking for a function.Nature 329, 392–3.PubMedGoogle Scholar
  10. Giulian, D. (1987) Ameboid microglia as effectors of inflammation in the central nervous system.Journal of Neuroscience Research 18, 155–71.PubMedGoogle Scholar
  11. Goto, M., Meyermann, R. &Wekerle, H. (1987) Ultrastructural immunocytochemistry of glia cells: double labeling studies using LR White embedding and colloidal gold.Histochemistry 87, 201–7.PubMedGoogle Scholar
  12. Graeber, M. B. &Kreutzberg, G. W. (1985) Immunogold staining (IGS) for electron microscopical demonstration of glial fibrillary acidic (GFA) protien in LR White embedded tissue.Histochemistry 83, 497–500.PubMedGoogle Scholar
  13. Graeber, M. B. &Kreutzberg, G. W. (1986) Astrocytes increase in glial fibrillary acidic protein during retrograde changes of facial motor neurons.Journal of Neurocytology 15, 363–73.PubMedGoogle Scholar
  14. Graeber, M. B. &Kreutzberg, G. W. (1988) Delayed astrocyte reaction following facial nerve axotomy.Journal of Neurocytology 17, (in press).Google Scholar
  15. Graebber, M. B., Streit, W. J. &Kreutzberg, G. W. (1988a) Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells.Journal of Neuroscience Research, (in press).Google Scholar
  16. Graeber, M. B., Tetzlaff, W., Streit, W. J. &Kreutzberg, G. W. (1988b) Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy.Neuroscience Letters 85, 317–21.PubMedGoogle Scholar
  17. Kreutzberg, G. W. (1966) Autoradiographische Untersuchung über die Beteiligung von Gliazellen an der axonalen Reaktion im Facialiskern der Ratte.Acta neuropathologica (Berlin) 7, 149–61.Google Scholar
  18. Kreutzberg, G. W. (1968) Über perineuronale Mikrogliazellen (autoradiographische Untersuchungen).Acta Neuropathologica (Berlin), Supplement 4, 141–5.Google Scholar
  19. Kreutzberg, G. W. (1987) Microglia. InEncyclopedia of Neuroscience (edited byAdelman, G.), pp. 661–2. Boston: Birkhäuser.Google Scholar
  20. Kreutzberg, G. W. &Baron, K. D. (1978) 5′-nucleotidase of microglial cells in the facial nucleus during axonal reaction.Journal of Neurocytology 7, 601–10.PubMedGoogle Scholar
  21. Matsumoto, Y. &Fujiwara, M. (1987) Absence of donor-type major histocompatibility complex class I antigen-bearing microglia in the rat central nervous system of radiation bone marrow chimeras.Journal of Neuroimmunology 17, 71–82.PubMedGoogle Scholar
  22. Newman, G. R. &Jasani, B. (1984) Post-embedding immunoenzyme techniques. InImmunolabelling for Electron Microscopy (edited byPolak, J. M. &Varndell, I. M.), pp. 53–70. Amsterdam: Elsevier.Google Scholar
  23. Osborn, M., Debus, E. &Weber, K. (1984) Monoclonal antibodies specific for vimentin.European Journal of Cell Biology 34, 137–43.PubMedGoogle Scholar
  24. Perry, V. H. &Gordon, S. (1987) Modulation of CD4 antigen on macrophages and microglia in rat brain.Journal of Experimental Medicine 166, 1138–43.PubMedGoogle Scholar
  25. Peters, A., Palay, S. L. &Webster, H. deF. (1976)The Fine Structure of the Nervous System. The Neurons and Supporting Cells, pp. 254–63. Philadelphia: Saunders.Google Scholar
  26. Price, R. W., Brew, B., Sidtis, J., Rosenblum, M., Scheck, A. C. &Cleary, P. (1988 The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complexScience 239, 586–92.PubMedGoogle Scholar
  27. Rio-Hortega, P. Del (1932) Microglia. InCytology and Cellular Pathology of the Nervous System (edited byPenfield, W.), pp. 481–534. New York: Hoeber.Google Scholar
  28. Schiffer, D., Giordana, M. T., Migheli, A., Giaccone, G., Pezzotta, S. &Mauro, A. (1986) Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain.Brain Research 374, 110–8.PubMedGoogle Scholar
  29. Sjöstrand, J. (1965) Proliferative changes in glial cells during nerve regeneration.Zeitschrift für Zellforschung und mikroskopische Anatomie 68, 481–93.Google Scholar
  30. Streit, W. J. &Kreutzberg, G. W. (1987) Lectin binding by resting and reactive microglia.Journal of Neurocytology 16, 249–60.PubMedGoogle Scholar
  31. Streit, W. J. &Kreutzberg, G. W. (1988) The response of endogenous glial cells to motor neuron degeneration induced by toxic ricin.Journal of Comparative Neurology 268, 248–63.PubMedGoogle Scholar
  32. Streit, W. J., Graeber, M. B. &Kreutzberg, G. W. (1988) Peripheral nerve lesion produces increased levels of MHC antigens in the CNS.Journal of Neuroimmunology, (in press).Google Scholar
  33. Takamiya, Y., Kohsaka, S., Toya, S., Otani, M. &Tsukada, Y. (1988) Immunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats.Developmental Brain Research 38, 201–10.Google Scholar
  34. Tetzlaff, W., Graeber, M. B., Bisby, M. A. &Kreutzberg, G. W. (1988) Increased glial fibrillary acidic protein synthesis in astrocytes during retrograde reaction of the rat facial nucleus.Glia 1, 90–5.PubMedGoogle Scholar
  35. Vaughn, J. E. &Peters, A. (1968) A third neuroglial cell type: an electron microscopic study.Journal of Comparative Neurology 133, 269–88.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • Manuel B. Graeber
    • 1
  • Wolfgang J. Streit
    • 1
  • Georg W. Kreutzberg
    • 1
  1. 1.Department of NeuromorphologyMax-Planck-Institute for PsychiatryMartinsriedFRG

Personalised recommendations