manuscripta mathematica

, Volume 11, Issue 1, pp 51–89

Characteristic invariants of foliated bundles

  • Franz W. Kamber
  • Philippe Tondeur
Article

Abstract

This paper gives a construction of characteristic invariants of foliated principal bundles in the category of smooth and complex manifolds or non-singular algebraic varieties. It contains a generalization of the Chern-Weil theory requiring no use of global connections. This construction leads for foliated bundles automatically to secondary characteristic invariants. The generalized Weil-homomorphism induces a homomorphism of spectral sequences. On the E1-level this gives rise to further characteristic invariants (derived characteristic classes). The new invariants are geometrically interpreted and examples are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [l]
    Atiyah, M.F.: Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc.85, 181–207 (1957)Google Scholar
  2. [2]
    Baum, P., Bott, R.: On the zeroes of meromorphic vectorfields, Essays On Topology and Related Topics (dedicated to G. De Rham), 1st Ed. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  3. [3]
    Borel, A.: Compact Clifford-Klein forms of symmetric spaces, Topology2, 111–122 (1963)Google Scholar
  4. [4]
    Bott, R.: A residue formula for holomorphic vector-fields, Differential Geometry1, 311–330 (1967)Google Scholar
  5. [5]
    Bott, R.: On a topological obstruction to integrability, Proc. Symp. Pure Math., Vol.XVI, 127–131 (1970)Google Scholar
  6. [6]
    Bott, R.: Lectures on characteristic classes and foliations, Springer Lecture Notes279 (1972)Google Scholar
  7. [7]
    Bott, R.: On the Lefschetz formula and exotic characteristic classes, Proc. of the Diff. Geom. Conf. Rome (1971)Google Scholar
  8. [8]
    Bott, R., Haefliger, A.: On characteristic classes of Γ-foliations, Bull. Amer. Math. Soc., to appearGoogle Scholar
  9. [9]
    Cartan, H.: Cohomologie réelle d'un espace fibré principal différentiable, Séminaire Cartan, exposés 19 et 20 (1949/50)Google Scholar
  10. [10]
    Chern, S.S.: Geometry of characteristic classes, Proc. Canad. Math. Congress Halifax (1971), to appearGoogle Scholar
  11. [11]
    Chern, S.S., Simons, J.: Some cohomology classes in principal fibre bundles and their applications to Riemannian geometry, Proc. Nat. Acad. Sc. USA68, 791–794 (1971)Google Scholar
  12. [12]
    Chern, S.S., Simons, J.: Characteristic forms and transgression I, to appearGoogle Scholar
  13. [13]
    Conlon, L.: Transversally parallelizable foliations of codimension two, to appearGoogle Scholar
  14. [14]
    Gelfand, I.M., Fuks, D.B.: The cohomology of the Lie algebra of tangent vector fields of a smooth manifold, I and II, Funct. Anal.3, 32–52 (1969), and4, 23–32 (1970)Google Scholar
  15. [15]
    Gelfand, I.M., Fuks, D.B.: The cohomology of the Lie algebra of formal vectorfields, Izv. Akad. Nauk SSR34, 322–337 (1970)Google Scholar
  16. [16]
    Godbillon, C.: Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki (novembre 1972), exposé 421Google Scholar
  17. [17]
    Godbillon, C., Vey, J.: Un invariant des feuilletages de codimension un, C. R. Ac. Sc. Paris, t.273, 92–95 (1971)Google Scholar
  18. [18]
    Godement, R.: Théorie des faisceaux, 1st Ed.: Hermann Paris 1958Google Scholar
  19. [19]
    Greub, W., Halperin, S., Vanstone, R.: Connections, curvature and cohomology, Vo. III, Academic Press, to appearGoogle Scholar
  20. [20]
    Grothendieck, A.: Sur quelques points d'algèbre homologique, Tohôku Math. J.9, 119–221 (1957)Google Scholar
  21. [21]
    Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique, Chap. III, Part 1, Publ. Math. IHES 11 (1961), Part 2, ibid. 17(1963)Google Scholar
  22. [22]
    Grothendieck, A.: On the De Rham cohomology of algebraic varieties, Publ. Math. IHES29, 95–103 (1966)Google Scholar
  23. [23]
    Grothendieck, A.: Classes de Chern et représentations linéaires des groupes discrets, Six exposés sur la cohomologie des schémas, North Holland, Amsterdam, exp. VIII, 215–305 (1968)Google Scholar
  24. [24]
    Haefliger, A.: Feuilletages sur les variétés ouvertes, Topology9, 183–194 (1970)Google Scholar
  25. [25]
    Haefliger, A.: Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki (juin 1972), exposé 412Google Scholar
  26. [26]
    Heitsch, J.L.: Deformations of secondary characteristic classes, Topology, to appearGoogle Scholar
  27. [27]
    Illusie, L.: Complexe cotangent et déformations, I et II, Lecture Notes in Math. 239 (1971) and 283 (1972) SpringerGoogle Scholar
  28. [28]
    Kamber, F., Tondeur, Ph.: Flat manifolds, Springer Lecture Notes67, 1–53 (1968)Google Scholar
  29. [29]
    Kamber, F., Tondeur, Ph.: Invariant differential operators and cohomology of Lie algebra sheaves, Differentialgeometrie im Grossen, Juli 1969, Berichte aus dem Math. Forschungsinstitut Oberwolfach, Heft 4, Mannheim, 177–230(1971)Google Scholar
  30. [30]
    Kamber, F., Tondeur, Ph.: Invariant differential Operators and the cohomology of Lie algebra sheaves, Memoirs Amer. Math. Soc.113, 1–125 (1971)Google Scholar
  31. [31]
    Kamber, F., Tondeur, Ph.: Characteristic classes of modules over a sheaf of Lie algebras, Notices Amer. Math. Soc.19, A-401 (February 1972)Google Scholar
  32. [32]
    Kamber, F., Tondeur, Ph.: Characteristic invariants of foliated bundles, preprint University of Illinois (August 1972)Google Scholar
  33. [33]
    Kamber, F., Tondeur, Ph.: Derived characteristic classes of foliated bundles, preprint University of Illinois (August 1972)Google Scholar
  34. [34]
    Kamber, F., Tondeur Ph.: Cohomologie des algèbres de Weil relatives tronquées, C. R. Ac. Sc. Paris, t.276, 459–462 (1973)Google Scholar
  35. [35]
    Kamber, F., Tondeur, Ph.: Algèbres de Weil semi-simpliciales, C. R. Ac. Sc. Paris, t.276, 1177–1179 (1973); Homomorphisme caractéristique d'un fibré principal feuilleté, ibid. t.276, 1407–1410 (1973); Classes caractéristiques dérivées d'un fibré principal feuilleté, ibid. t.276, 1449–1452 (1973)Google Scholar
  36. [36]
    Katz, N.M., Oda, T.: On the differentiation of De Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ.8-2, 199–213 (1968)Google Scholar
  37. [37]
    Koszul, J.L.: Déformations et connexions localement plates, Ann. Inst. Fourier, Grenoble18, 103–114 (1968)Google Scholar
  38. [38]
    Lehmann, D.: J-homotopie dans les espaces de connexions et classes exotiques de Chern-Simons, C. R. Ac. Sc. Paris, t.275, 835–838 (1972)Google Scholar
  39. [39]
    Lehmann, D.: Classes caractéristiques exotiques et J-connexité des espaces de connexions, to appearGoogle Scholar
  40. [40]
    Martinet, J.: Classes caractéristiques des systèmes de Pfaff, to appearGoogle Scholar
  41. [40]
    Matsushima, Y.: On Betti numbers of compact locally symmetric Riemannian manifolds, Osaka Math. J.14, 1–20 (1962)Google Scholar
  42. [41]
    Molino, P.: Connexions et G-structures sur les variétés feuilletées, Bull. Soc. Math. France92, 59–63 (1968)Google Scholar
  43. [42]
    Molino, P.: Classes d'Atiyah d'un feuilletage et connexion transverses projetables, C. R. Ac. Sc. Paris, t.272, 779–781 (1971).Google Scholar
  44. [43]
    Molino, P.: Classes caractéristiques et obstructions d'Atiyah pour les fibrés principaux feuilletés, C. R. Ac. Sc. Paris, t.272, 1376–1378 (1971)Google Scholar
  45. [44]
    Molino, P.: Propriétés cohomologiques et propriétés topologiques des feuilletages à connexion transverse projetable, to appearGoogle Scholar
  46. [45]
    Pasternack, J. S.: Foliations and compact Lie group actions, Comment. Math. Helv.46, 467–477 (1971)Google Scholar
  47. [46]
    Reinhart, B. L.: Foliated manifolds with bundle-like metrics, Ann. of Math.69, 119–132 (1959)Google Scholar
  48. [47]
    Reinhart, B. L.: Harmonic integrals on foliated manifolds, Amer. J. of Math.81, 529–536 (1959)Google Scholar
  49. [48]
    Vaisman, I.: Sur la cohomologie des variétés Riemanniennes feuilletées, C. R. Ac. Paris, t.268, 720–723 (1969)Google Scholar
  50. [49]
    Vaisman, I.: Sur une classe de complexes de cochaines, Math. Ann.194, 35–42 (1971)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Franz W. Kamber
    • 1
    • 2
  • Philippe Tondeur
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of IllinoisUrbana
  2. 2.Forschungsinstitut für MathematikEidg. Technische HochschuleZürich

Personalised recommendations