, Volume 12, Issue 6, pp 476–497

Upward drawings of triconnected digraphs

  • P. Bertolazzi
  • G. Di Battista
  • G. Liotta
  • C. Mannino


A polynomial-time algorithm for testing if a triconnected directed graph has an upward drkwing is presented. An upward drkwing is a planar drkwing such that all the edges flow in a common direction (e.g., from bottom to top). The problem arises in the fields of automatic graph drkwing and ordered sets, and has been open for several years. The proposed algorithm is based on a new combinatorial characterization that maps the problem into a max-flow problem on a sparse network; the time complexity isO(n+r2), wheren is the number of vertices andr is the number of sources and sinks of the directed graph. If the directed graph has an upward drkwing, the algorithm allows us to construct one easily.

Key words

Planarity Automatic graph drkwing Hierarchical structures Max-flow st-Digraphs Acyclic digraphs Ordered sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Berge,Graphs, North-Holland, Amsterdam, 1985.Google Scholar
  2. [2]
    K. Booth and G. Lueker, Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms,J. Comput. System Sci., vol. 13, pp. 335–397, 1976.Google Scholar
  3. [3]
    N. Chiba, T. Nishizeki, S. Abe, and T. Ozkwa, A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees,J. Comput. System Sci., vol. 30, pp. 54–76, 1985.Google Scholar
  4. [4]
    H. de Fraysseix and P. Rosenstiehl, A Depth First Characterization of Planarity,Ann. Discrete Math., vol. 13, pp. 75–80, 1982.Google Scholar
  5. [5]
    G. Di Battista, W. P. Liu, and I. Rival, Bipartite Graphs, Upward Drkwings, and Planarity,Inform. Process. Lett., vol. 36, pp. 317–322, 1990.Google Scholar
  6. [6]
    G. Di Battista and R. Tamassia, Algorithms for Plane Representations of Acyclic Digraphs,Theoret. Comput. Sci., vol. 61, pp. 175–198, 1988.Google Scholar
  7. [7]
    G. Di Battista and R. Tamassia, Incremental Planarity Testing,Proc. 30th IEEE Symposium on Foundations of Computer Science, pp. 436–441, 1989.Google Scholar
  8. [8]
    G. Di Battista, R. Tamassia, and I. G. Tollis, Area Requirement and Symmetry Display of Planar Upward Drkwings,Discrete Comput. Geom., vol. 7, pp. 381–401, 1992.Google Scholar
  9. [9]
    P. Eades and R. Tamassia, Algorithms for Drkwing Graphs: An Annotated Bibliography, Tech. Report No. CS-89-09, Brown University, 1989.Google Scholar
  10. [10]
    P. Eades and L. Xuemin, How To Draw a Directed Graph,Proc. IEEE Workshop on Visual Languages, pp. 13–17, 1989.Google Scholar
  11. [11]
    S. Even,Graph Algorithms, Computer Science Press, Rockville, MD, 1979.Google Scholar
  12. [12]
    J. Hopcroft and R. E. Tarjan, Efficient Planarity Testing,J. Assoc. Comput. Mach., vol. 21, no. 4, pp. 549–568, 1974.Google Scholar
  13. [13]
    M. D. Hutton and A. Lubiw, Upward Planar Drawing of Single Source Acyclic Digraphs,Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, pp. 203–211, 1991.Google Scholar
  14. [14]
    R. Jégan, R. Nowakowski, and I. Rival, The Diagram Invariant Problem for Planar Lattices,Acta Sci. Math. (Szeged), vol. 51, pp. 103–121, 1987.Google Scholar
  15. [15]
    D. Kelly, Fundamentals of Planar Ordered Sets,Discrete Math., vol. 63, pp. 197–216, 1987.Google Scholar
  16. [16]
    D. Kelly and I. Rival, Planar Lattices,Canad. J. Math., vol. 27, pp. 636–665, 1975.Google Scholar
  17. [17]
    A. Lempel, A. Even, and I. Cederbaum, An Algorithm for Planarity Testing of Graphs,Theory of Graphs (International Symposium, Rome, 1966) (P. Rosenstiehl, ed.), Gordon and Breach, New York, pp. 215–232, 1967.Google Scholar
  18. [18]
    L. Lovasz and M. D. Plummer,Matching Theory, Annals of Discrete Mathematics, vol. 29, North-Holland, Amsterdam, p. 71, 1986.Google Scholar
  19. [19]
    S. M. Malitz and A. Papakostas, On the Angular Resolution of Planar Graphs,Proc. ACM Symposium on Theory of Computing, 1992.Google Scholar
  20. [20]
    T. Nishizeki and N. Chiba,Planar Graphs: Theory and Algorithms, Annals of Discrete Mathematics, North-Holland, Amsterdam, 1988.Google Scholar
  21. [21]
    C. Platt, Planar Lattices and Planar Graphs,J. Combin. Theory Ser. B, vol. 21, pp. 30–39, 1976.Google Scholar
  22. [22]
    I. Rival, The Diagram, inGraphs and Orders (I. Rival, ed.), Reidel, Dordrecht, pp. 103–133, 1985.Google Scholar
  23. [23]
    I. Rival, Graphical Data Structures for Ordered Sets, inAlgorithms and Orders (I. Rival, ed.), Kluwer, Boston, pp. 3–31, 1989.Google Scholar
  24. [24]
    I. Rival and J. Urrutia, Representing Orders on the Plane by Translating Convex Figures,Order, vol. 4, pp. 319–339, 1988.Google Scholar
  25. [25]
    K. Sugiyama, S. Tagkwa, and M. Toda, Methods for Visual Understanding of Hierarchical Systems,IEEE Trans. Systems Man Cybernet., vol. 11, pp. 109–125, 1981.Google Scholar
  26. [26]
    R. Tamassia, On Embedding a Graph in the Grid with the Minimum Number of Bends,SIAM J. Comput., vol. 16, pp. 421–444, 1987.Google Scholar
  27. [27]
    R. Tamassia, G. Di Battista, and C. Batini, Automatic Graph Drawing and Readability of Diagrams,IEEE Trans. Systems Man Cybernet., vol. 18, pp. 61–79, 1988.Google Scholar
  28. [28]
    R. Tamassia and I. G. Tollis, A Unified Approach to Visibility Representations of Planar Graphs,Discrete Comput. Geometry, vol. 1, pp. 321–341, 1986.Google Scholar
  29. [29]
    C. Thomassen, Planar Acyclic Oriented Graphs,Order, vol. 5, pp. 349–361, 1989.Google Scholar
  30. [30]
    W. Trotter and J. Moore, Jr., The Dimension of Planar Posets,J. Combin. Theory Ser. B, vol. 22, pp. 54–67, 1977.Google Scholar
  31. [31]
    G. Vijayan, Geometry of Planar Graphs with Angles,Proc. 2nd ACM Symposium on Computational Geometry, pp. 116–124, 1986.Google Scholar
  32. [32]
    H. Whitney, Congruent Graphs and the Connectivity of Graphs,Amer. J. Math., vol. 54, pp. 150–168, 1932.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • P. Bertolazzi
    • 1
  • G. Di Battista
    • 2
  • G. Liotta
    • 2
  • C. Mannino
    • 1
  1. 1.IASI-CNRRomaItaly
  2. 2.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations