Archiv der Mathematik

, Volume 54, Issue 6, pp 539–548 | Cite as

Rings with restricted injective condition

  • Dinh van Huynh
  • Nguyen V. Dung


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.Ahsan, Rings characterized by their torsion cyclic modules. Houston J. Math. (3)14 (1988), to appear.Google Scholar
  2. [2]
    A. K. Boyle, Hereditary QI rings. Trans. Amer. Math. Soc.192, 115–120 (1974).Google Scholar
  3. [3]
    A. K. Boyle andK. R. Goodearl, Rings over which certain modules are injective. Pacific J. Math.58, 43–53 (1975).Google Scholar
  4. [4]
    A. W. Chatters andC. R. Hajarnavis, Rings in which every complement right ideal is a direct summand. Quart. J. Math. Oxford (2)28, 61–80 (1977).Google Scholar
  5. [5]
    A. W.Chatters and C. R.Hajarnavis, Rings with chain conditions. London 1980.Google Scholar
  6. [6]
    J. H. Cozzens, Homological properties of the ring of differential polynomials. Bull. Amer. Math. Soc.76, 75–79 (1970).Google Scholar
  7. [7]
    R. F. Damiano, A right PCI ring is right noetherian. Proc. Amer. Math. Soc.77, 11–14 (1979).Google Scholar
  8. [8]
    C. Faith, When are proper cyclics injective? Pacific J. Math.45, 97–112 (1973).Google Scholar
  9. [9]
    C. Faith, On a theorem of Chatters. Comm. Algebra (2)3, 169–184 (1975).Google Scholar
  10. [10]
    C.Faith, Algebra II: Ring theory. Berlin-Heidelberg-New York 1976.Google Scholar
  11. [11]
    J. D. Fuelberth andM. L. Teply, The singular submodule of a finitely generated submodule splits off. Pacific J. Math.40, 73–82 (1972).Google Scholar
  12. [12]
    J. S.Golan, Localisation of non-commutative rings. New York-Basel 1975.Google Scholar
  13. [13]
    K. R.Goodearl, Singular torsion and splitting properties. Mem. Amer. Math. Soc.124 (1972).Google Scholar
  14. [14]
    Y. Hirano andH. Tominaga, Regular rings,V-rings and their generalizations. Hiroshima Math. J.9, 137–149 (1979).Google Scholar
  15. [15]
    G. Michler andO. E. Villamayor, On rings whose simple modules are injective. J. Algebra25, 185–201 (1973).Google Scholar
  16. [16]
    B. L. Osofsky, Non-injective cyclic modules. Proc. Amer. Math. Soc.19, 1383–1384 (1968).Google Scholar
  17. [17]
    P. F. Smith, Decomposing modules into projectives and injectives. Pacific J. Math.76, 247–266 (1978).Google Scholar
  18. [18]
    P. F. Smith, Rings characterized by their cyclic modules. Canad. J. Math.24, 93–111 (1979).Google Scholar
  19. [19]
    M. L. Teply, The singular submodule of a cyclic module splits off. Canad. J. Math.24, 450–464 (1972).Google Scholar
  20. [20]
    M. L. Teply, Semiprime rings with the singular splitting property. Pacific J. Math.57, 575–579 (1975).Google Scholar
  21. [21]
    M. L. Teply, A history of progress on the singular splitting problem. Secretariado de Publicationes y Departmento de Algebra y Fundamentos Universidad de Murcia, Murcia 1984.Google Scholar
  22. [22]
    C. I. Visonhaler, Orders in QF-3 rings. Suplement, J. Algebra17, 149–151 (1971).Google Scholar
  23. [23]
    R.Wisbauer, Grundlagen der Modul- und Ringtheorie. München 1988.Google Scholar
  24. [24]
    R. Yue Chi Ming, On injectivity andp-injectivity. J. Math. Kyoto Univ.27, 439–452 (1987).Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Dinh van Huynh
    • 1
  • Nguyen V. Dung
    • 1
  1. 1.Institute of MathematicsBo ho HanoiVietnam

Personalised recommendations