algebra universalis

, Volume 21, Issue 1, pp 25–32 | Cite as

On the independent subsets of a closure system with singular dimension

  • E. C. Milner
  • M. Pouzet


Closure System Independent Subset Singular Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. M.Cohn,Universal Algebra, D. Reidel Publishing Co. (1981).Google Scholar
  2. [2]
    P. Erdös andA. Hajnal,On the Structure of Set Mappings, Acta Math. Acad. Sci. Hungar.9 (1958), p. 111–131.Google Scholar
  3. [3]
    P. Erdös andA. Hajnal,Unsolved and Solved Problems in Set Theory, Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., (1971)), pp. 269–287. Amer. Math. Soc., Providence, R.I., (1974).Google Scholar
  4. [4]
    A.Hajnal and N.Sauer,Complete Subgraphs of Infinite Multipartite Graphs and Antichains in Partially Ordered Sets, submitted to Discrete Math.Google Scholar
  5. [5]
    E. C.Milner and M.Pouzet,On the Cofinality of Partially Ordered Sets, I. Rival (ed.) Ordered Sets, pp. 279–298, D. Reidel Publishing Co. (1981).Google Scholar
  6. [6]
    E. C. Milner andK. Prikry,The Cofinality of a Partially Ordered Set, Proc. London Math. Soc. (3)46 (1983), 454–470.Google Scholar
  7. [7]
    M.Pouzet,Parties cofinales des ordres partiels ne contenant pas d'antichaines infinîes, J. London, Math. Society (to appear).Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • E. C. Milner
    • 1
    • 2
  • M. Pouzet
    • 1
    • 2
  1. 1.University of CalgaryCalgaryCanada
  2. 2.Université Claude BernardLyon 1France

Personalised recommendations