Mathematische Zeitschrift

, Volume 183, Issue 1, pp 95–129 | Cite as

On various means involving the Fourier coefficients of cusp forms

  • Anton Good
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deligne, P.: La conjecture de Weil I. Inst. Hautes Etudes Sci. Publ. Math.43, 273–307 (1974)Google Scholar
  2. 2.
    Erdélyi, A.: Asymptotic expansions. New York: Dover 1956Google Scholar
  3. 3.
    Goldfeld, D.: Analytic and arithmetic theory of Poincaré series. Astérisque61, 95–107. Paris: Soc. Math. France 1979Google Scholar
  4. 4.
    Good. A.: Beiträge zur Theorie der Dirichletreihen, die Spitzenformen zugeordnet sind. J. Number Theory13, 18–65 (1981)Google Scholar
  5. 5.
    Good, A.: Cusp forms and eigenfunctions of the Laplacian. Math. Ann.255, 523–548 (1981)Google Scholar
  6. 6.
    Good, A.: Local analysis of Selberg's trace formula (to appear)Google Scholar
  7. 7.
    Good, A.: The square mean of Dirichlet series associated to cusp forms (to appear)Google Scholar
  8. 8.
    Joris, H.: Ω-Sätze für gewisse multiplikative arithmetische Funktionen. Comment. Math. Helv.48, 409–435 (1973)Google Scholar
  9. 9.
    Kubota, T.: Elementary theory of Eisenstein series. New York: Halsted 1973Google Scholar
  10. 10.
    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and theorems for the special functions of mathematical physics, 3rd ed. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  11. 11.
    Montgomery, H.L.: Topics in multiplicative number theory. Lecture Notes in Math.227. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  12. 12.
    Neunhöffer, H.: Über die analytische Fortsetzung von Poincaréreihen. Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl.2, 33–90 (1973)Google Scholar
  13. 13.
    Rankin, R.A.: Contribution to the theory of Ramanujan's function τ(n) and similar arithmetical functions II. Math. Proc. Cambridge Phil. Soc.35, 357–372 (1939)Google Scholar
  14. 14.
    Rankin, R.A.: An Ω-result for the coefficients of cusp forms. Math. Ann.203, 239–250 (1973)Google Scholar
  15. 15.
    Roelcke, W.: deÜber die Wellengleichung bei Grenzkreisgruppen erster Art. Sitzungsber. Heidelberger Akad. Wiss. Math.-Natur. Kl.4, 159–267 (1956)Google Scholar
  16. 16.
    Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, II. Math. Ann.167, 292–337 (1966);168, 261–324 (1967)Google Scholar
  17. 17.
    Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proc. Sympos. Pure Math.8, pp. 1–15. Providence: Amer. Math. Soc. 1965Google Scholar
  18. 18.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Princeton: University Press 1971Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Anton Good
    • 1
  1. 1.Forschungsinstitut für MathematikETH-ZentrumZürichSwitzerland

Personalised recommendations