Advertisement

Algorithmica

, Volume 9, Issue 5, pp 495–514 | Cite as

Selecting distances in the plane

  • Pankaj K. Agarwal
  • Boris Aronov
  • Micha Sharir
  • Subhash Suri
Article

Abstract

We present a randomized algorithm for computing the kth smallest distance in a set ofn points in the plane, based on the parametric search technique of Megiddo [Mel]. The expected running time of our algorithm is O(n4/3 log8/3n). The algorithm can also be made deterministic, using a more complicated technique, with only a slight increase in its running time. A much simpler deterministic version of our procedure runs in time O(n3/2 log5/2n). All versions improve the previously best-known upper bound ofO(@#@ n9/5 log4/5n) by Chazelle [Ch]. A simpleO(n logn)-time algorithm for computing an approximation of the median distance is also presented.

Key words

Parametric search Arrangements Random-sampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS]
    P. K. Agarwal and M. Sharir, Planar geometric location problems, Technical Report 90-58, DIMACS, Rutgers University, New Brunswick, NJ, August 1990. (Also to appear inAlgorithmica).Google Scholar
  2. [BO]
    J. L. Bentley and T. Ottmann, Algorithms for reporting and counting geometric intersections,IEEE Trans. Comput. 28 (1979), 643–647.Google Scholar
  3. [BFP+]
    M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds for selection,J. Comput. System Sci. 7 (1973), 448–461.Google Scholar
  4. [Ch]
    B. Chazelle, Some techniques for geometric searching with implicit set representations,Acta Inform.24 (1987), 565–682.Google Scholar
  5. [CL]
    B. Chazelle and D. T. Lee, On a circle placement problem,Computing 1 (1968), 1–16.Google Scholar
  6. [CS]
    K. Clarkson and P. Shor, Applications of random sampling in computational geometry, II,Discrete Comput. Geom. 4 (1989), 387–421.Google Scholar
  7. [Co]
    R. Cole. Slowing down sorting networks to obtain faster sorting algorithms,J. Assoc. Comput. Mach. 34 (1987), 200–208.Google Scholar
  8. [CV]
    R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel list ranking,Inform. and Control 70 (1986), 32–53.Google Scholar
  9. [E]
    H. Edelsbrunner,A lgorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.Google Scholar
  10. [EGP+]
    H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir, Arrangements of curves in the plane: Combinatorics, topology and algorithms,Theoret. Comput. Sci. 92 (1992), 319–336.Google Scholar
  11. [EGS]
    H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision,SIAM J. Comput. 15 (1986), 317–340.Google Scholar
  12. [FL]
    M. Fischer and L. Ladner, Parallel prefix computation,J. Assoc. Comput. Mach. 27 (1980), 831–838.Google Scholar
  13. [HS]
    S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path-compression schemes,Combinatorica 6 (1986), 151–177.Google Scholar
  14. [Ma]
    J. Matoušek, Approximations and optimal geometric divide-and-conquer,Proc. 23rd Annual ACM Symposium on Theory of Computing, 1991, pp. 506–511.Google Scholar
  15. [Mel]
    N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,J. Assoc. Comput. Mach. 30 (1983), 852–865.Google Scholar
  16. [Me2]
    N. Megiddo, Partition with two lines in the plane,J. Algorithms 6 (1985), 430–433.Google Scholar
  17. [PS]
    F. Preparata and M. Shamos,Computational Geometry: An Introduction, Springer-Verlag, Heidelberg, 1985.Google Scholar
  18. [S]
    J. Salowe, Selection problems in computational geometry, Ph.D. Thesis, Department of Computer Science, Rutgers University, New Brunswick, NJ, 1987.Google Scholar
  19. [SPP]
    A. Schönhage, M. Paterson, and N. Pippenger, Finding the median,J. Comput. Systems Sci. 13(1976), 184–199.Google Scholar
  20. [SV]
    Y. Shiloach and U. Vishkin, Finding the maximum, merging and sorting in a parallel computation model,J. Algorithms 2 (1981), 88–102.Google Scholar
  21. [TVt]
    R. Tamassia and J. S. Vitter, Parallel transitive closure and point location in planar structures,SIAM J. Comput. 20 (1991), 708–725.Google Scholar
  22. [TVs]
    R. Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm,SIAM J. Comput. 14 (1985), 862–874.Google Scholar
  23. [V]
    L. Valiant, Parallelism in comparison problems,SIAM J. Comput. 4 (1975), 348–355.Google Scholar
  24. [Y]
    A. Yao, On constructing minimum spanning tree ink-dimensional space and related problems,SIAM J. Comput. 11 (1982), 721–736.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • Pankaj K. Agarwal
    • 1
  • Boris Aronov
    • 2
  • Micha Sharir
    • 3
    • 4
  • Subhash Suri
    • 5
  1. 1.Computer Science DepartmentDuke UniversityDurhamUSA
  2. 2.Department of Computer SciencePolytechnic UniversityBrooklynUSA
  3. 3.Department of Computer Science, Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  4. 4.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  5. 5.BellcoreMorristownUSA

Personalised recommendations