Journal of Neurocytology

, Volume 19, Issue 6, pp 948–961 | Cite as

Ultrastructural double localization of B-50/GAP43 and synaptophysin (p38) in the neonatal and adult rat hippocampus

  • M. Van Lookeren Campagne
  • A. B. Oestreicher
  • P. M. P. Van Bergen En Henegouwen
  • W. H. Gispen


B-50/GAP43, a neuron-specific phosphoprotein, is highly expressed in developing nervous tissue. Monospecific polyclonal affinity-purified B-50 antibodies were used to document the ultrastructural distribution of B-50 in the hippocampus of 90-day-old (P90) and 1-day-old (P1) rats. Double-labelling immunoprocedures were performed to compare the localization of B-50 and synaptophysin (p38), a protein specific for synaptic vesicles. By immunofluorescence light microscopy B-50 and p38 were similarly distributed in the CA1 neuropil of P90 rats. In contrast, in P1 rats B-50 was more widely distributed than p38. By electron microscopy of P90 rat hippocampus, B-50 was located at the plasma membranes of axon shafts and of p38-immunoreactive axon terminals. Some B-50 was found in the cytosol of axon terminals. B-50 was absent at the plasma membranes of apical dendrites and of pyramidal cells. In the P1 rat hippocampus, B-50 was detected at the plasma membrane of growth cones, axon terminals and axon shafts, but not in their cytosol. The plasma membranes of pyramidal cell bodies and their processes extending into the stratum radiatum were without B-50. B-50-immunoreactive organelles of the lysosomal family were found in the cytosol of pyramidal cells of the hippocampus of P1 and P90 rats. This ultrastructural study shows that during development of the stratum radiatum in the hippocampal field CA1, the localization of B-50 persists at the plasma membrane of axons and axon terminals in P1 and P90 rats. This localization of B-50 is consistent with the suggestion that B-50 acts as a regulator of neurotransmitter release and intracellular messengers.


Cytosol Pyramidal Cell Synaptic Vesicle Growth Cone Axon Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akers, R. F. &Routtenberg, A. (1985) Brain protein phosphorylates a 47 Mr protein (F1) directly related to synaptic plasticity.Brain Research 334, 147–51.PubMedGoogle Scholar
  2. Alexander, K. A., Cimler, B. M., Meier, K. E. &Storm, D. R. (1987) Regulation of calmodulin binding to P-57.Journal of Biological Chemistry 262, 6108–13.PubMedGoogle Scholar
  3. Aloyo, V., Zwiers, H. &Gispen, W. H. (1983) Phosphorylation of B-50 protein by calcium-activated phospholipid- dependent protein kinase and B-50 protein kinase.Journal of Neurochemistry 41, 649–53.PubMedGoogle Scholar
  4. Andreasen, T. J., Luetje, C. W., Heideman, W. &Storm, D. R. (1983) Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes.Biochemistry 22, 4615–18.PubMedGoogle Scholar
  5. Benowitz, L. I., Apostolides, P. J., Perrone-Bizzozero, N., Finklestein, S. P. &Zwiers, H. (1988) Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain.Journal of Neuroscience 8, 339–52.PubMedGoogle Scholar
  6. Benowitz, L. I., Perrone-Bizzozero, N. I., Finklestein, S. P. &Bird, D. E. (1989) Localization of the growth-associated phosphoprotein GAP-43 (B-50, F1) in the human cerebral cortex.Journal of Neuroscience 9, 990–5.PubMedGoogle Scholar
  7. Benowitz, L. I. &Routtenberg, A. (1987) A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity.Trends in Neurosciences 10, 527–32.Google Scholar
  8. Cimler, B. M., Giebelhaus, D. H., Wakim, B. T., Storm, D. R. &Moon, R. T. (1987) Characterization of murine cDNAs encoding P-57, a neural-specific calmodulin-binding protein.Journal of Biological Chemistry 262, 12158–63.PubMedGoogle Scholar
  9. Cotman, C. W. &Nadler, J. V. (1978) Reactive synap-togenesis in the hippocampus. InNeuronal Plasticity (edited byCotman, C. W.) pp. 227–71, New York: Raven Press.Google Scholar
  10. De Camilli, P., Cameron, R. &Greengard, P. (1983) Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections.Journal of Cell Biology 96, 13337–54.Google Scholar
  11. De Graan, P. N. E., Obstreicher, A. B., Schrama, L. H. &Gispen, W. H. (1986) Phosphoprotein B-50: localization and function.Progress in Brain Research 69, 37–50.PubMedGoogle Scholar
  12. De Graan, P. N. E., Schrama, L. H., Heemskerk, F. M. J., Dekker, L. V. &Gispen, W. H. (1990) The role of protein kinase C substrate B-50 (GAP-43) in neurotransmitter release and long-term potentiation.Advanced Experimental and Medical Biology, in press.Google Scholar
  13. Dekker, L. V., De Graan, P. N. E., Versteeg, D. H. G., Oestreicher, A. B. &Gispen, W. H. (1989a) Phosphorylation of B-50 (GAP43) is correlated with neurotransmitter release in rat hippocampal slices.Journal of Neurochemistry 52, 24–30.PubMedGoogle Scholar
  14. Dekker, L. V., De Graan, P. N. E., Oestreicher, A. B., Versteeg, D. H. G. &Gispen, W. H. (1989b) Inhibition of noradrenaline release by antibodies to B-50 (GAP-43).Nature 342, 74–6.PubMedGoogle Scholar
  15. Gispen, W. H., Leunissen, J. L. M., Oestreicher, A. B., Verkleij, A. J. &Zwiers, H. (1985) Presynaptic localization of B-50 phosphoprotein: the (ACTH)-sensitive protein kinase substrate involved in rat brain poly-phosphoinositide metabolism.Brain Research 328, 381–5.PubMedGoogle Scholar
  16. Gorgels, Th. G. M. F., Van Lookeren Campagne, M., Oestreicher, A. B., Gribnau, A. A. M. &Gispen, W. H. (1989) Ultrastructural localization of B-50/GAP43 in developing and mature pyramidal tract in the rat: predominant localization at the cytoplasmic side of the plasma membrane.Journal of Neuroscience 9, 3861–9.PubMedGoogle Scholar
  17. Goslin, K., Schreyer, D. J., Skene, J. H. P. &Banker, G. (1988) Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones.Nature 336, 672–74.PubMedGoogle Scholar
  18. Jahn, R., Schiebler, W., Ouimet, C. &Greengard, P. (1985) A 38 000-dalton membrane protein (p38) present in synaptic vesicles.Proceedings of the National Academy of Sciences, (USA) 82, 4137–41.Google Scholar
  19. Linden, D. J., Wong, K. L., Sheu, F. S. &Routtenberg, A. (1988) NMDA receptor blockade prevents the increase in protein kinase C substrate (protein F1) phosphorylation produced by long-term potentiation.Brain Research 458, 142–6.PubMedGoogle Scholar
  20. Liu, Y. &Storm, D. R. (1989) Dephosphorylation of neuromodulin by calcineurin.Journal of Biological Chemistry 22, 12800–4.Google Scholar
  21. Lovinger, D. M., Akers, R. F., Nelson, R. B., Barnes, C. A., McNaughton, B. L. &Routtenberg, A. (1985) A selective increase in hippocampal protein Fl phosphorylation directly related to three day growth of long-term synaptic enhancement.Brain Research 343, 137–43.PubMedGoogle Scholar
  22. Lovinger, D. M., Akers, R. F., Colley, P., Linden, D. &Routtenberg, A. (1986) Direct relation of synaptic plasticity to phosphorylation of membrane protein F1: Potential association with protein kinase C translocation.Brain Research 339, 205–11.Google Scholar
  23. McGuire, C. B., Snipes, G. J. &Norden, J. J. (1988) Light-microscopic immunolocalization of the growth- and plasticity-associated protein GAP-43 in the developing brain.Developmental Brain Research 41, 277–91.Google Scholar
  24. Neve, R. L., Perrone-Bizzozero, N. I., Finklestein, S., Zwiers, H., Bird, E., Kurnit, D. M. &Benowitz, L. I. (1987) The neuronal growth-associated protein GAP43 (B-50, F1): neuronal specificity, developmental regulation and regional distribution of the human and rat mRNA.Molecular Brain Research 2, 177–83.Google Scholar
  25. Ng, S. C., De La Monte, S. M., Conboy, G. L., Karns, L. R. &Fishman, M. C. (1988) Cloning of human GAP-43: growth association and ischemic resurgence.Neuron 1, 133–9.PubMedGoogle Scholar
  26. Oestreicher, A. B. &Gispen, W. H. (1986) Comparison of the immunocytochemical distribution of the phospho-protein B-50 in the cerebellum and hippocampus of immature and adult rat brain.Brain Research 375, 267–9.PubMedGoogle Scholar
  27. Oestreicher, A. B., Van Dongen, C. J., Zwiers, H. &Gispen, W. H. (1983) Affinity-purified anti-B-50 protein antibody: interference with the function of the phospho-protein B-50 in synaptic plasma membranes.Journal of Neurochemistry 41, 331–40.PubMedGoogle Scholar
  28. Oestreicher, A. B., Zwiers, H., Schotman, P. &Gispen, W. H. (1981) Immunohistochemical localization of a phosphoprotein (B-50) isolated from rat brain synapto-somal plasma membranes.Brain Research Bulletin 6, 145–53.PubMedGoogle Scholar
  29. Peters, A., Palay, S. L. &Webster, H. deF. (1976)The Fine Structure of the Nervous System: the Neurons and Supporting Cells. Toronto: Saunders.Google Scholar
  30. Routtenberg, A. (1985) Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth.Behavioural Neurobiology 44, 186–200.Google Scholar
  31. Skene, J. H. P. &Virág, I. (1989) Post-translational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43.Journal of Cell Biology 108, 613–24.PubMedGoogle Scholar
  32. Van Hooff, C. O. M., Holthuis, J., Oestreicher, A. B., Boonstra, J., De Graan, P. N. E. &Gispen, W. H. (1989) Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC12 cells.Journal of Cell Biology 108, 1115–25.PubMedGoogle Scholar
  33. Vanlookeren Campagne, M., Oestreicher, A. B., Van Bergen En Henegouwen, P. M. P. &Gispen, W. H. (1989) Ultrastructural immunocytochemical localization of B-50/GAP43, a protein kinase C substrate, in isolated presynaptic nerve terminals and neuronal growth cones.Journal of Neurocytology 18, 479–89.PubMedGoogle Scholar
  34. Wiedenmann, B. &Franke, W. W. (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38 000 characteristic of presynaptic vesicles.Cell 41, 1017–28.PubMedGoogle Scholar
  35. Zwiers, H., Schotman, P. &Gispen, W. H. (1980) Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain.Journal of Neurochemistry 34, 1689–99.PubMedGoogle Scholar
  36. Zwiers, H., Verhaagen, J., Van Dongen, C., De Graan, P. N. E. &Gispen, W. H. (1985) Resolution of rat brain phosphoprotein B-50 into multiple forms by two dimensional electrophoresis: evidence for multisite phosphorylation.Journal of Neurochemistry 44, 1083–90.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • M. Van Lookeren Campagne
    • 1
  • A. B. Oestreicher
    • 1
  • P. M. P. Van Bergen En Henegouwen
    • 2
  • W. H. Gispen
    • 1
  1. 1.Rudolf Magnus Institute and Institute of Molecular Biology and Medical BiotechnologyUniversity of UtrechtCH UtrechtThe Netherlands
  2. 2.Department of Molecular Cell BiologyUniversity of UtrechtCH UtrechtThe Netherlands

Personalised recommendations