Water, Air, and Soil Pollution

, Volume 85, Issue 4, pp 2679–2685 | Cite as

Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables

  • E. C. Spiker
  • R. P. HoskerJr.
  • V. C. Weintraub
  • S. I. Sherwood
Part VII Air Pollution Effects on Materials

Abstract

The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.

Key words

Dry deposition sulfur dioxide chamber wind tunnel corrosion limestone marble humidity moisture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baedecker P. A., Reddy, M. M., Reimann K. J., Sciammarella C. A.: 1992,Atmospheric Environment,26b, 147–158.Google Scholar
  2. Braun, R. C. and Wilson, M. J. G.: 1970,Atmospheric Environment,4, 371–378.Google Scholar
  3. Edney, E. O., Stiles, D. C., Spence, J. W., Haynie, F. H., Wilson, W. E.: 1986,Atmospheric Environment,20, 541–548.Google Scholar
  4. Gilardi, E. F.: 1966,Absorption of atmospheric sulfur-dioxide by clay, brick, and other building materials, Ph.D dissertation, Rutgers (University Microfilms) 67–8187.Google Scholar
  5. Johansson, L-G., Lindqvist, O., Mangio R. E.: 1988:Durability Building Material,5, 439–449.Google Scholar
  6. Johnson J. B., Haneef S. J., Hepburn B. J., Hutchinson A. J., Thompson, G. E., Wood G. C.: 1990,Atmospheric Environment,24A, 2585–2592.Google Scholar
  7. Lipfert, F.W.: 1989,J. Air Poll. Control Assoc.,39, 446–452.Google Scholar
  8. Mangio, R. E.: 1991,The influence of various air pollutants on the sulfation of calcareous building materials, Ph.D dissertation, Gothenburg University, Gothenburg, Sweden.Google Scholar
  9. McGee, E. S.: 1989,U.S. Geological Survey Bulletin No. 1889, 25pages.Google Scholar
  10. McMahon T. A. and Denison, P. J.: 1979,Atmospheric Environment,13, 571–585.Google Scholar
  11. Sehmel, G. A.: 1980,Atmospheric Environment,14, 983–1011.Google Scholar
  12. Sherwood, S. I., Gatz, D. A., Hosker Jr., R. P.,et al.: 1990a,Processes of deposition to structures, NAPAP State of Science (SOS/T) Report 20, In: National Acid Precipitation Assessment Program, Acidic Deposition: State of Science and Technology, Vol. III.Google Scholar
  13. Sherwood, S. I., Lipfert, F. W.,et al.: 1990b,Distribution of materials potentially at risk from acidic deposition, NAPAP SOS/T Report 21,ibid.Google Scholar
  14. Slinn, W. G. N., Hasse, L., Hicks, B. B., Hogan, A. W., Lal, D., Liss, P. S., Munnich, K. O., Sehmel, G. A., Vittori, O.: 1978,Atmospheric Environment,12, 2055–2087.Google Scholar
  15. Spedding, D. J.: 1969,Atmospheric Environment,3, 683.Google Scholar
  16. Spiker E. C., Comer, V. J., Hosker R. P, Sherwood, S. I.: 1992a,Dry deposition of SO 2 on limestone and marble: role of humidity, Proceedings 7th International Congress on Deterioration and Conservation of Stone, Lisbon, June 1992, 397–406.Google Scholar
  17. Spiker E. C., Hosker R. P., Comer, V. J., White, J. R., Werre Jr. R. W., Harmon F. L. Gandy G. D., Sherwood, S. I.: 1992b,Atmospheric Environment,26, 2885–2892.Google Scholar
  18. Voldner, E. C., Barrie, L. A., Sirois, A.: 1986,Atmospheric Environment,20, 2101–2123.Google Scholar
  19. Wu, Y. L., Davidson, C. I., Dolske, D. A., Sherwood, S. I.: 1992,Aerosol Science and Technology,16, 65–81.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • E. C. Spiker
    • 1
  • R. P. HoskerJr.
    • 2
  • V. C. Weintraub
    • 1
  • S. I. Sherwood
    • 3
  1. 1.U.S. Geological Survey956 National CenterRestonUSA
  2. 2.U.S. National Ocean and Atmospheric AdministrationOak RidgeUSA
  3. 3.U.S. National Park ServiceWashington, D.C.USA

Personalised recommendations