Advertisement

Acta Informatica

, Volume 29, Issue 6–7, pp 545–554 | Cite as

Deterministic sequential functions

  • T. Harju
  • H. C. M. Kleijn
  • M. Latteux
Article

Abstract

The simple rational partial functions accepted by generalized sequential machines are shown to coincide with the compositions ℋ ℋ P −1 ℋ, where ℋ P consists of the prefix codings. The rational functions accepted by generalized sequential machines are proved to coincide with the compositions ℋ ℳℋ P −1 ℛ ℋ , where ℳ is the family of endmarkers and ℛ is the family of removals of endmarkers. (The compositions are read from left to right). We also show that ℳ ℋℋ P −1 ℋ is the family of the subsequential functions.

Keywords

Information System Operating System Data Structure Rational Function Communication Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berstel, J.: Transductions and context-free languages. Stuttgart: B. G. Teubner 1979Google Scholar
  2. 2.
    Choffrut, C., Culik, K. II: Properties of finite and pushdown transducers. SIAM J. Comput.12, 300–315 (1983)Google Scholar
  3. 3.
    Eilenberg, S.: Automata, languages, and machines, Vol. A. New York: Academic Press 1974Google Scholar
  4. 4.
    Harju, T., Kleijn, H.C.M., Latteux, M.: Compositional representation of rational functions. RAIRO Theoret. Inf.26, 243–255 (1992)Google Scholar
  5. 5.
    Karhumäki, J., Linna, M.: A note on morphic characterization of languages. Discrete Appl. Math.5, 243–246 (1983)Google Scholar
  6. 6.
    Latteux, M., Leguy, J.: On the composition of morphisms and inverse morphisms (Lect. Notes Comput. Sci., vol. 154, pp. 420–432) Berlin Heidelberg New York: Springer 1983Google Scholar
  7. 7.
    Latteux, M., Turakainen, P.: A new normal form for the compositions of morphisms and inverse morphisms. Math. Syst. Theory20, 261–271 (1987)Google Scholar
  8. 8.
    Turakainen, P.: A homomorphic characterization of principal semi-AFLs without using intersection with regular sets. Inf. Sci.27 141–149 (1982)Google Scholar
  9. 9.
    Turakainen, P.: A machine-oriented approach to compositions of morphisms and inverse morphisms. EATCS Bull.20, 162–166 (1983)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • T. Harju
    • 1
  • H. C. M. Kleijn
    • 2
  • M. Latteux
    • 3
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland
  2. 2.Department of Computer ScienceLeiden UniversityLeidenThe Netherlands
  3. 3.Laboratoire d'Informatique Fondamentale de Lille, CNRS UA 369Université de Lille IVilleneuve d'Ascq CedexFrance

Personalised recommendations