Advertisement

Applied Mathematics and Optimization

, Volume 32, Issue 2, pp 163–194 | Cite as

Filtrage linéaire par morceaux avec petit bruit d'observation

  • M. C. Roubaud
Article

Mots-clés

Filtrage linéaire par morceaux Petit bruit d'observation Filtres approchés Filtre de Kalman-Bucy Test du rapport de vraisemblance 

Abstract

We consider a piecewise linear filtering problem with small observation noise. In two different situations we construct an approximate finite-dimensional filter based on several Kalman-Bucy filters running in parallel and a procedure of tests. In the first case our work generalizes some results of Fleminget al. to more general piecewise linear dynamics.

AMS classification

60G35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    R. F. Bass and E. Pardoux (1987), Uniqueness for diffusions with piecewise constant coefficients, Probab. Theory Related Fields, 76:557–572.Google Scholar
  2. 2.
    A. Bensoussan (1987), On some approximation techniques in nonlinear filtering, Stochastic Differential Systems, Stochastic Control and Applications, W. H. Flemming and P. L. Lions, eds., IMA, vol. 10, Springer-Verlag, New York, pp. 17–31.Google Scholar
  3. 3.
    M. Chaleyat-Maurel and D. Michel (1984), Des résultats de non existence de filtre de dimension finie, Stochastics, 13:83–102.Google Scholar
  4. 4.
    N. El Karoui and M. Chaleyat-Maurel (1978), Un problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur ℝ, cas continu, Astérisque, 52–53:117–144.Google Scholar
  5. 5.
    W. H. Fleming, D. Ji, and E. Pardoux (1988), Piecewise linear filtering with small observation noise, Proc. 8th INRIA Conf. on Analysis and Optimization of Systems, Lecture Notes in Control and Information Science, vol. 111, Springer-Verlag, Berlin, pp. 725–739.Google Scholar
  6. 6.
    W. H. Fleming, D. Ji, P. Salame, and Q. Zhang (1991), Piecewise monotone filtering in discrete time with small observation noise, IEEE Trans. Automat. Control, 36:1181–1186.Google Scholar
  7. 7.
    W. H. Fleming and E. Pardoux (1989), Piecewise monotone filtering with small observation noise, SIAM J. Control Optim., 20:1156–1181.Google Scholar
  8. 8.
    M. Fujisaki, G. Kallianpur, and H. Kunita (1972), Stochastic differential equations for the nonlinear filtering problem, Osaka J. Math., 9:19–44.Google Scholar
  9. 9.
    A. H. Jazwinski (1970), Stochastic Processes and Filtering Theory, Academic Press, New York.Google Scholar
  10. 10.
    D. Ji (1987), Nonlinear Filtering with Small Observation Noise, Ph.D. Thesis, Brown University.Google Scholar
  11. 11.
    R. E. Kalman and R. S. Bucy (1961), New results in linear filtering and prediction theory, J. Basic Engrg ASME, 83:95–108.Google Scholar
  12. 12.
    R. Katzur, B. Z. Bobrovsky, and Z. Schuss (1984), Asymptotic analysis of the optimal filtering problem for one-dimensional diffusions measured in a low noise channel, I, II, SIAM J. Appl. Math., 44:591–604, and 44:1176–1191.Google Scholar
  13. 13.
    H. J. Kushner (1964), On the differential equations satisfied by the conditional probability densities of Markov processes, SIAM J. Control, 2:106–119.Google Scholar
  14. 14.
    F. Le Gland (1981), Estimation de paramètres dans les processus stochastiques, en observation incomplète—Application à un problème de radio-astronomie, Thèse de Docteur-Ingenieur, Université Paris IX-Dauphine.Google Scholar
  15. 15.
    R. Ch. Liptzer and A. N. Shyriaev (1977), Statistics of Random Processes, Vols. I-II, Springer-Verlag, New York.Google Scholar
  16. 16.
    P. Milheiro de Oliveira (1990), Etudes asymptotiques en filtrage non linéaire avec petit bruit d'observation, Thèse, Université de Provence.Google Scholar
  17. 17.
    P. Milheiro de Oliveira and M. C. Roubaud (1991), Filtrage linéaire par morceaux d'un système en temps discret avec petit bruit d'observation, Rapport 1451, INRIA.Google Scholar
  18. 18.
    D. Ocone and E. Pardoux (1989), A Lie-algebraic criterion for nonexistence of finite-dimensionally computable filters, Proc. 3rd Trente Conf. on SPDEs II, G. Da Prato and L. Tubaro, eds., Lecture Notes in Mathematics, No. 1390, Springer-Verlag, Berlin.Google Scholar
  19. 19.
    E. Pardoux and M. C. Roubaud (1991), Finite-dimensional approximate filter in case of high signal-to-noise ratio, Stochastic Analysis, E. Merzbach, A. Shwartz, and E. Mayer-Wolf, eds., Academic Press, New York, pp. 433–448.Google Scholar
  20. 20.
    J. Picard (1986), Nonlinear filtering of one-dimensional diffusions in the case of a high signal-to-noise ratio, SIAM J. Appl. Math., 46:1098–1125.Google Scholar
  21. 21.
    J. Picard (1987), Asymptotic study of estimation problems with small observation noise, in Stochastic Modelling and Filtering, Lecture Notes in Control and Information Science, Vol. 91, Springer-Verlag, Berlin.Google Scholar
  22. 22.
    J. Picard (1991), Efficiency of the extended Kalman filter for nonlinear systems with small noise, SIAM J. Appl. Math., 51:843–885.Google Scholar
  23. 23.
    M. C. Roubaud (1990), Filtrage linéaire par morçeaux avec petit bruit d'observation, Thèse, Université de Provence.Google Scholar
  24. 24.
    W. M. Wonham (1985), Linear Multivariable Control: a Geometric Approach, 3rd edn. Springer-Verlag, New York.Google Scholar
  25. 25.
    M. Zakai (1969), On the optimal filtering of diffusion processes, Z. Wahrsch. Verw. Gebiete, 11:230–243.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • M. C. Roubaud
    • 1
  1. 1.LMC/IMAGGrenoble Cedex 9France

Personalised recommendations