Brain Topography

, Volume 7, Issue 1, pp 71–88 | Cite as

A spatiotemporal dipole model of the stimulus preceding negativity (spn) prior to feedback stimuli

  • Koen B. E. Böcker
  • Cornelis H. M. Brunia
  • Margaretha M. C. van den Berg-Lenssen


Ten subjects performed a time production task, in which they were instructed to press a button four seconds after the presentation of an auditory stimulus. Two seconds after the button press they received either auditory or visual feedback on the temporal accuracy of their response. In such a paradigm negative slow brain potentials can be recorded preceding the response (Movement Preceding Negativity, MPN) as well as preceding the feedback stimulus (Stimulus Preceding Negativity, SPN). Spatiotemporal dipole modelling is used to gain insight in the possible generators of MPN and SPN. From the models it follows that the MPN can be described by one contralateral radial dipole and a bilateral pair of tangential dipoles. All three dipoles are located near central electrode positions, so the generators of the MPN probably reside within the motor cortex. The SPN is modelled by a bilateral frontotemporal pair of dipoles, hypothetically representing activation of the Insulae Reili. The insular cortex is involved in the processing of affective-motivational input, such as carried by the feedback in the present paradigm. However, processing of the information content of the feedback stimulus might by itself also activate the frontal cortex. Both the response and the feedback stimulus are followed by a positive peak, which can be described by the same deep posterior dipole. Both peaks probably represent a P3, which is related to context updating.

Key words

Stimulus Preceding Negativity Affective-motivational valence Movement Preceding Negativity Motor preparation P3 Spatiotemporal dipole modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achim, A., Richer, F., Alain, C. and Saint-Hilaire, J.-M. A test of model adequacy applied to the dimensionality of multichannel average auditory evoked potentials. In: Samson-Dollfus et al. (Eds.), Statistics and Topography in Quantitative EEC Elsevier, Paris, 1988: 161–171.Google Scholar
  2. Achim, A., Richer, F. and Saint-Hilaire, J.-M. Methodological considerations for the evaluation of spatio-temporal source models. Electroenceph. clin. Neurophysiol., 1991, 79: 227–240.PubMedGoogle Scholar
  3. Ary, J.P., Klein, S.A. and Fender, D.H. Location of sources of evoked scalp potentials: corrections for skull and scalp thickness. IEEE-BME, 1981, 28: 447–452.Google Scholar
  4. Birbaumer, N., Elbert, T., Canavan, A.G.M. and Rockstroh, B. Slow potentials of the cerebral cortex and behavior. Physiol. Rev., 1990, 70: 1–41.PubMedGoogle Scholar
  5. Böcker, K.B.E., Brunia, C.H.M. and Cluitmans, P.J.M. A spatiotemporal dipole model of the readiness potential in humans. I. Finger movement. Electroenceph. clin. Neurophysiol., in press.Google Scholar
  6. Bötzel, K., Plendl, H., Paulus, W. and Scherg, M. Bereitschaftspotential: is there a contribution of the supplementary motor area? Electroenceph. clin. Neurophysiol., 1993, 89: 187–196.PubMedGoogle Scholar
  7. Brunia, C.H.M. Movement and stimulus preceding negativity. Biol. Psychol., 1988, 26: 165–178.PubMedGoogle Scholar
  8. Brunia, C.H.M. Waiting in readiness: gating in attention and motor preparation. Psychophysiol., 1993, 30: 327–339.Google Scholar
  9. Brunia, C.H.M. and Damen, E.J.P. Distribution of slow potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroenceph. clin. Neurophysiol., 1988, 69: 234–243.PubMedGoogle Scholar
  10. Brunia, C.H.M., Damen, E.J.P. and Böcker, K.B.E. Expectancy Revisited. Brain Topogr., 1993, 5: 429–433.PubMedGoogle Scholar
  11. Chwilla, D.J. and Brunia, C.H.M. Event-related potentials to different feedback stimuli. Psychophysiol., 1991a, 28: 123–132.Google Scholar
  12. Chwilla, D.J. and Brunia, C.H.M. Event-related potential correlates of non-motor anticipation. Biol. Psychol., 1991b, 32: 125–141.PubMedGoogle Scholar
  13. Chwilla, D.J. and Brunia, C.H.M. Effects of emotion on eventrelated potentials in an arithmetic task. J. of Psychophysiol., 1992, 6: 321–332.Google Scholar
  14. Damen, E.J.P, and Brunia, C.H.M. Changes in heart rate and slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Psychophysiol., 1987a, 24: 700–713.Google Scholar
  15. Damen, E.J.P. and Brunia, C.H.M. Precentral potential shifts related to motor preparation and stimulus anticipation: a replication. In: R. Johnson, Jr., J.W. Rohrbaugh and R. Parasuraman (Eds.), Current Trends in Event-Related Potential Research. Electroenceph. clin. Neurophysiol. Suppl. 40. Elsevier, Amsterdam, 1987b: 13–16.Google Scholar
  16. Damen, E.J.P. and Brunia, C.H.M. Is a stimulus conveying task relevant information a sufficient condition to elicit a stimulus preceding negativity (SPN)? Psychophysiol., 1994, 31: 129–139.Google Scholar
  17. Donald, M.W. Discussion. CNV and human behavior. In: W.C. McCallum and J.R. Knott (Eds.), Event-related slow potentials of the brain: their relation to behavior. Electroenceph. clin. Neurophysiol., Suppl. 33, Elsevier, Amsterdam, 1973: 241–242.Google Scholar
  18. Donchin, E., Gerbrandt, L.A., Leifer, L. and Tucker, L. Is the contingent negative variation contingent on a motor response? Psychophysiol., 1972, 9: 178–188.Google Scholar
  19. Donchin, E., Ritter, W. and McCallum, W.C. Cognitive psychophysiology: the endogenous components of the ERP. In: E. Callaway, P. Tueting and S.H. Koslow (Eds.), Event-Related Brain Potentials in Man. Academic Press, New York, 1978: 349–411.Google Scholar
  20. Grünewald, G. and Grünewald-Zuberbier, E. Cerebral potentials during voluntary ramp movements in aiming tasks. In: A.W.K. Gaillard and W. Ritter (Eds.), Tutorials in Event-Related Potential Research: Endogenous Components. North-Holland Publ., Amsterdam, 1983: 311–327.Google Scholar
  21. Grünewald, G., Grünewald-Zuberbier, E., Hömberg, V. and Schuhmacher, H. Hemispheric asymmetry of feedback-related slow negative potential shifts in a positioning movement task. In: R. Karrer, J. Cohen and T. Tueting (Eds.), Brain and Information: Event-Related Potentials. Annals of the N.Y. Acad. Sciences, 1984,425:470–476.Google Scholar
  22. Homan, R.W., Herman, J. and Purdy, P. Cerebral location of international 10–20 system electrode placements. Electroenceph. clin. Neurophysiol., 1987, 66: 376–382.PubMedGoogle Scholar
  23. Klorman, R. and Ryan, R.M. Heart rate, contingent negative variation, and evoked potentials during anticipation of affective stimulation. Psychophysiol., 1980, 17: 513–523.Google Scholar
  24. Kolb, B. and Whishaw, I.Q. Fundamentals of human neuropsychology. 2nd Ed. Freeman, New York, 1985.Google Scholar
  25. Kornhuber, H.H. and Deecke, L. Hirnpotentialänderungen bei Willkührbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch., 1965, 284: 1–17.Google Scholar
  26. Kristeva, R., Cheyne, D. and Deecke, L. Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroenceph. clin. Neurophysiol., 1991, 81: 284–298.PubMedGoogle Scholar
  27. Lang, W., Lang, M., Heise, B., Deecke, L. and Kornhuber, H.H. Brain potentials related to voluntary hand tracking motivation and attention. Human Neurobiol., 1984, 3: 235–240.Google Scholar
  28. Loveless, N.E. and Sanford, A.J. Slow potential correlates of preparatory set. Biol. Psychol., 1974, 1: 303–314.PubMedGoogle Scholar
  29. Macar, F. and Besson, M. Contingent negative variation in processes of expectancy, motor preparation and time estimation. Biol. Psychol., 1985, 21: 293–307.PubMedGoogle Scholar
  30. McCallum, W.C. Potentials related to expectancy, preparation and motor activity. In: T.W. Picton (Ed.), Human Event-Related Potentials. EEG Handbook (revised series), 1988, 3: 427–534.Google Scholar
  31. Mesulam, M.-M. The functional anatomy and hemispheric regulation of directed attention. TINS, 1983, 6: 384–387.Google Scholar
  32. Mesulam, M.-M and Mufson, J.E. The Insula of Reil in man and monkey. Architectonics, connectivity and function. In: A. Peters and E.G. Jones (Eds.), Cerebral Cortex, Vol. 4. Association and Auditory Cortices. Plenum, New York, 1985: 179–226.Google Scholar
  33. Milner, B. Some effects of frontal lobectomy in man. In: J.M. Warren and K.A. Akert (Eds.), The Frontal Granular Cortex and Behavior. McGraw-Hill, New York, 1964: 313–334.Google Scholar
  34. Nieuwenhuys, R., Voogd, J. and Van Huijzen, Chr. The human central nervous system. A synopsis and atlas. 3rd Ed. Springer-Verlag, Berlin, 1988.Google Scholar
  35. Nunez, P.L. Electric fields of the brain. The neurophysics of EEG. Oxford Univ. Press, New York, 1981.Google Scholar
  36. Perrin, F., Pernier, J., Bertrand, O. and Echallier, J.F. Spherical splines for scalp potential and scalp current density mapping. Electroenceph. clin. Neurophysiol., 1989, 72: 184–187.PubMedGoogle Scholar
  37. Perrin, F., Pernier, J., Bertrand, O. and Echallier, J.F. Corrigendum. Electroenceph. clin. Neurophysiol., 1990, 76: 565.Google Scholar
  38. Rockstroh, B., Elbert, T. and Lutzenberger, W. Slow potentials of the brain and behavior: is there a non-motor CNV? Psychophysiol., 1989, 4A: S1.Google Scholar
  39. Rohrbaugh, J.W. and Gaillard, A.W.K. Sensory and motor aspects of the contingent negative variation. In: A. W.K. Gaillard and W. Ritter (Eds.), Tutorials in Event-Related Potential Research: Endogenous Components. North-Holland Publ, Amsterdam, 1983: 269–310.Google Scholar
  40. Rösler, F. Perception or action: some comments on preparatory negative potentials. In: C.H.M. Brunia, G. Mulder and M.N. Verbaten (Eds.), Event-Related Brain Research. Electroenceph. clin. Neurophysiol. Suppl. 42. Elsevier, Amsterdam, 1991: 116–129.Google Scholar
  41. Rösler, F. and Heil, M. Toward a functional categorization of slow waves: taking into account past and future events. Psychophysiol., 1991, 28: 344–358.Google Scholar
  42. Ruchkin, D.S., Sutton, S., Mahaffey, D. and Glaser, J. Terminal CNV in the absence of motor response. Electroenceph. clin. Neurophysiol., 1986, 63: 445–463.PubMedGoogle Scholar
  43. Scherg, M. Brain Electrical Source Analysis. Versions 1.8 and 1.9,1989–1992.Google Scholar
  44. Scherg, M. and Berg, P. Use of prior knowledge in brain electromagnetic source analysis. Brain Topogr., 1991, 4: 143–150.PubMedGoogle Scholar
  45. Scherg, M. and Picton, T.W. Separation and identification of event-related potential components by brain electric source analysis. In: C.H.M. Brunia, G. Mulder and M.N. Verbaten (Eds.), Event-Related Brain Research. Electroenceph. clin. Neurophysiol. Suppl. 42. Elsevier, Amsterdam, 1991: 24–37.Google Scholar
  46. Simons, R.F., Öhman, A. and Lang, P.J. Anticipation and response set: cortical, cardiac and electrodermal correlates. Psychophysiol., 1979, 16: 222–233.Google Scholar
  47. Steinmetz, H., Fürst, G. and Meyer, B.-U. Craniocerebral topography within the international 10–20 system. Electroenceph. clin. Neurophysiol., 1989, 72: 499–506.PubMedGoogle Scholar
  48. Stuss, D.T. and Picton, T.W. Neurophysiological correlates of human concept formation. Behav. Biol., 1978, 23: 153–162.Google Scholar
  49. Van Boxtel, G.J.M. and Brunia, C.H.M. Motor and non-motor aspects of slow brain potentials. Biol. Psychol., (in press).Google Scholar
  50. Van den Berg-Lenssen, M.M.C., Brunia, C.H.M. and Blom, J.A. Correction for ocular artifacts in EEGs using an autoregresive model to describe the EEG: a pilot study. Electroencephal. clin. Neurophysiol., 1989, 73: 72–83.Google Scholar
  51. Vasey, W.M. and Thayer, J.F. The continuing problem of false positives in repeated measurements ANOVA in psychophysiology: a multivariate solution. Psychophysiol., 1987, 24: 474–486.Google Scholar

Copyright information

© Human Sciences Press, Inc. 1994

Authors and Affiliations

  • Koen B. E. Böcker
    • 1
    • 2
  • Cornelis H. M. Brunia
    • 2
  • Margaretha M. C. van den Berg-Lenssen
    • 1
    • 2
  1. 1.Co-operation Centre Tilburg and Eindhoven UniversitiesThe Netherlands
  2. 2.Physiological Psychology SectionTilburg UniversityTilburgThe Netherlands

Personalised recommendations