Advertisement

Journal of Materials Science

, Volume 30, Issue 9, pp 2352–2357 | Cite as

Mechanical and physical properties of post-creep, pitch-based carbon filaments

  • J. Gerard Lavin
  • Kei Kogure
  • G. Sines
Papers

Abstract

New fabrication techniques have been developed for uniaxial creep specimens of pitch-based carbon filaments, with a matrix-free, test section. Pitch-based carbon filaments were found to plastically deform up to 73% elongation without necking. Mechanical properties and physical properties were changed significantly.

Keywords

Polymer Mechanical Property Test Section Fabrication Technique Carbon Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kogure, PhD Dissertation, University College of Los Angeles (1992).Google Scholar
  2. 2.
    G. Sines, Z. Yang andB. Vickers,Carbon 27 (1989) 403.Google Scholar
  3. 3.
    S. Ohtani,J. Soc. Automotive Engng Jpn 45 (1991) 46.Google Scholar
  4. 4.
    S. Ozbek, G. M. Jenkins andD. H. Isaac, in “20th Biennial Conference on Carbon, Extended Abstracts”, Santa Barbara (American Carbon Society. University Park, OH, 1991) p. 308.Google Scholar
  5. 5.
    J. G. Francis, G. M. Jenkins andD. H. Isaac, in “20th Biennial Conference on Carbon, Extended Abstracts”, Santa Barbara (American Carbon Society, University Park, OH, 1991) p. 246.Google Scholar
  6. 6.
    K. Kogure, J. G. Lavin andG. Sines, in “21st Biennial Conference on Carbon, Extended Abstracts”, Buffalo (American Carbon Society, University Park, PA, 1993) p. 18.Google Scholar
  7. 7.
    W. Johnson, in “Proceedings of the Third Conference of Industrial Carbon and Graphite” (Society of Chemical Industry, London, 1970) p. 447.Google Scholar
  8. 8.
    Y. Tanabe, E. Yasuda, K. Yamaguchi, M. Inagaki andY. Yamada,TANSO 147 (1991) 66.Google Scholar
  9. 9.
    M. Guigon, A. Oberein andG. Desarmot,Fibre Sci. Technol. 20 (1984) 177.Google Scholar
  10. 10.
    L. MA, MSc Thesis, University College of Los Angeles (1990).Google Scholar
  11. 11.
    M. S. Dresseehaus, C. Dresselhaus, K. Sugihara, L. L. Spain andH. A. Goedberg, “phite Fibers and Filaments”, inger Series in Materials Science (Springer, Berlin, 1988).Google Scholar
  12. 12.
    A. Shindo, Report of the Government Industrial Research Institute, Osaka, No. 317, 1961.Google Scholar
  13. 13.
    J. C. Bowman, J. A. Krumhansl andJ. T. Meers, “Industrial Carbon and Graphite” (Society of Chemical Industry, 1958) p. 52.Google Scholar
  14. 14.
    R. O. Grisdale, A. C. Pfister andW. Van Roosebroek,Bell Syst. Technol. J. 30 (1951) 271.Google Scholar
  15. 15.
    J. G. Lavin, D. R. Boyington, J. Lahijani, B. Nysten andJ. -P. Issi,Carbon 31 (1993) 1001.Google Scholar
  16. 16.
    B. Nysten, J. -P. Issi, R. Barton, D. R. Boyington andJ. G. Lavin,J. Phys. D, Appl. Phys. 24 (1991) 714.Google Scholar
  17. 17.
    A. A. Bright,Phys. Rev. B 20 (1979) 5142.Google Scholar
  18. 18.
    V. Bayot, L. Piraux, J. -P. Michenaud andJ. -P. Issi,ibid. 40 (1989) 3514.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Gerard Lavin
    • 1
  • Kei Kogure
    • 2
  • G. Sines
    • 2
  1. 1.Dupont Co., Central Science & Engineering, Experimental StationWilmingtonUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaLos Angeles, Los AngelesUSA

Personalised recommendations