Journal of Neurocytology

, Volume 23, Issue 8, pp 453–459 | Cite as

Co-induction of neuronal interferon-gamma and nitric oxide synthase in rat motor neurons after axotomy: a role in nerve repair or death?

  • K. Kristensson
  • M. Aldskogius
  • Z. -C. Peng
  • T. Olsson
  • H. Aldskogius
  • M. Bentivoglio


Induction of an interferon-gamma-like molecule, previously isolated from neurons (N-IFN-γ), and of the neuronal isoform I of the synthetic enzyme of the free radical nitric oxide, nitric oxide synthase I, as well as of NADPH-diaphorase, were examined in axotomized dorsal motor vagal and hypoglossal neurons. Unilateral transection of the vagal and hypoglossal nerves was performed in the same rat and an induction of N-IFN-γ and nitric oxide synthase I immunostaining as well as NADPH-diaphorase histochemical positivity was observed in the ipsilateral motoneurons after 2–4 days. The immuno- and enzyme- histochemical positivities were much stronger in the dorsal motor vagal neurons than in hypoglossal neurons. Two and 4 weeks after axotomy N-IFN-γ immunoreactivity and NADPH-diaphorase positivity persisted in the former, but started to decrease in the latter neurons. Previous data have shown that 23 weeks after nerve transection the majority of the dorsal motor vagal neurons are lost, while the majority of the hypoglossal neurons survive. The high and persistent expression of N-IFN-γ and nitric oxide synthase I after axotomy in the dorsal motor vagal neurons, that are largely destined to die, indicates that the co-induction of these two molecules may be implicated in the pathogenesis of neuronal degeneration.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldskogius, H., Barron, K. D. &Regal, R. (1980) Axon reaction in dorsal motor vagal and hypoglossal neurons of the adult rat. Light microscopy and RNA-cytochemistry.Journal of Comparative Neurology 193, 165–77.Google Scholar
  2. Bredt, D. S. &Snyder, S. H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.Proceedings of the National Academy of Science (USA) 86, 9030–3.Google Scholar
  3. Bredt, D. S., Hwang, P. M. &Snyder, S. H. (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide.Nature 347, 768–70.Google Scholar
  4. Chang, J. Y., Martin, D. P. &Johnson, E. M. (1990) Interferon suppresses sympathetic neuronal cell death caused by nerve growth factor deprivation.Journal of Neurochemistry 55, 436–45.Google Scholar
  5. Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G. &Peterson, P. K. (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism.Journal of Immunology 149, 2736–41.Google Scholar
  6. Clowry, G. J. (1993) Axotomy induces NADPH diaphorase activity in neonatal but not in adult motoneurones.NeuroReport 5, 361–4.Google Scholar
  7. Dawson, T. M., Bredt, D. S., Fotuhi, M., Hwang, P. M. &Snyder, S. H. (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues.Proceedings of National Academy of Science (USA) 88, 7797–801.Google Scholar
  8. Dawson, T. M., Dawson, V. L. &Snyder, S. H. (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide.Annals of Neurology 32, 279–311.Google Scholar
  9. Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R. &Snyder, S. H. (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures.Journal of Neuroscience 13, 2651–61.Google Scholar
  10. Ding, A. H., Nathan, C. F. &Stuehr, D. J. (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages.Journal of Immunology 141, 2407–12.Google Scholar
  11. Eccleston, P. A., Jessen, K. R. &Mirsky, R. (1989) Transforming growth factor-β and γ-interferon have dual effects on growth of peripheral glia.Journal of Neuroscience Research 24, 524–30.Google Scholar
  12. Eneroth, A., Kristensson, K., Ljungdahl, Å &Olsson, T. (1991) Interferon-γ-like immunoreactivity in developing rat spinal ganglia neuronsin vivo andin vitro.Journal of Neurocytology 20, 225–31.Google Scholar
  13. Erkman, I., Wuarin, I., Cadell, D. &Kato, A. C. (1989) Interferon induces astrocyte maturation causing an increase in cholinergic properties of cultured human spinal cord cells.Developmental Biology 132, 375–88.Google Scholar
  14. Fiallos-Estrada, C. E., Kummer, W., Mayer, B., Bravo, R., Zimmermann, M. &Herdegen, T. (1993) Long-lasting increase of nitric oxide synthase immunoreactivity, NADPH-diaphorase reaction and c-JUN co-expression in rat dorsal root ganglion neurons following sciatic nerve transection.Neuroscience Letters 150, 169–73.Google Scholar
  15. Gonzalez, M. F., Sharp, F. R. &Sagar, S. M. (1987) Axotomy increases NADPH-diaphorase staining in rat vagal motor neurons.Brain Research Bulletin 18, 417–27.Google Scholar
  16. Herdegen, T., Brecht, S., Mayer, B., Leah, J., Kummer, W., Bravo, R. &Zimmermann, M. (1993) Long-lasting expression of JUN and KROX transcription factors and nitric oxide synthase in intrinsic neurons of the rat brain following axotomy.Journal of Neuroscience 13, 4130–45.Google Scholar
  17. Hope, B. T., Michael, G. J., Knigge, K. M. &Vincent, S. R. (1991) Neuronal NADPH diaphorase is a nitric oxide synthase.Proceedings of the National Academy of Science (USA) 88, 2811–14.Google Scholar
  18. Kiefer, R., Haas, C. A. &Kreutzberg, G. W. (1991) Gamma interferon-like immunoreactive material in rat neurons: evidence against a close relationship to gamma interferon.Neuroscience 45, 551–60.Google Scholar
  19. Kingston, A. E., Bergsteinsdottir, K., Jessen, K. R., Van Der Meide, P. H., Colston, M. J. &Mirsky, R. (1989) Schwann cells co-cultured with stimulated T cells and antigen express major histocompatibility complex (MHC) class II determinants without interferon-pretreatment: synergistic effects of interferon-γ and tumor necrosis factor on MHC class II induction.European Journal of Immunology 19, 177–83.Google Scholar
  20. Laiwand, R., Werman, R. &Yarom, Y. (1987) Time course and distribution of motor neuronal loss in the dorsal motor vagal nucleus of guinea pig after vagotomy.Journal of Comparative Neurology 256, 527–37.Google Scholar
  21. Ljungdahl, Å., Olsson, T., Van Der Meide, P. H., Holmdahl, R., Klareskog, L. &Höjeberg, B. (1989) Interferon-gamma-like immunoreactivity in certain neurons of the central and peripheral nervous system.Journal of Neuroscience Research 24, 451–6.Google Scholar
  22. Maehlen, J., Daa Schröder, H., Klareskog, L., Olsson, T. &Kristensson, K. (1988) Axotomy induces MHC class I antigen expression on rat nerve cells.Neuroscience Letters 92, 8–13.Google Scholar
  23. Maehlen, J., Nennesmo, I., Olsson, A.-B., Olsson, T., Daa Schröder, H. &Kristensson, K. (1989) Peripheral nerve injury causes transient expression of MHC class I antigens in rat motor neurons and skeletal muscles.Brain Research 481, 368–72.Google Scholar
  24. Manzoni, O., Prezeau, L., Marin, P., Deshager, S., Bockaert, J. &Fagni, L. (1992) Nitric-oxide-induced blockade of NMDA receptors.Neuron 8, 653–62.Google Scholar
  25. Marletta, M. A., Yoon, P. S., Iyengar, R., Leaf, C. D. &Wishnok, J. S. (1988) Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate.Biochemistry 27, 8706–11.Google Scholar
  26. Matsumoto, T., Nakane, M., Pollack, J. S., Kuk, J. E. &Förstermann, U. (1993) A correlation between soluble and brain nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative.Neuroscience Letters 155, 61–4.Google Scholar
  27. Neiss, W. F., Lichius, O. G., Angelov, D. N., Gunkel, A. &Stennert, E. (1992) The hypoglossal-facial anastomosis as models of neuronal plasticity in the rat.Annals of Anatomy 174, 419–33.Google Scholar
  28. Olsson, T., Kristensson, K., Ljungdahl, Å., Maehlen, J., Holmdahl, R. &Klareskog, L. (1989) Gammainterferon-like immunoreactivity in axotomized rat motor neuronsJournal of Neuroscience 9, 3870–5.Google Scholar
  29. Olsson, T., Diener, P., Ljungdahl, A., Höjeberg, B., Van Der Meide, P. H. &Kristensson, K. (1992) Facial nerve transection causes expansion of myelin autoreactive T cells in regional lymph nodes and T cell homing to the facial nucleus.Autoimmunity 13, 117–26.Google Scholar
  30. Olsson, T., Kelic, S., Edlund, C., Bakhiet, M., Höjeberg, B., Van Der Meide, P. H., Ljungdahl, Å. &Kristensson, K. (1994) Neuronal interferon-γ immunoreactive molecule, bioactivities and purification.European Journal of Immunology 24, 308–14.Google Scholar
  31. O'malley, M. B. &Macleish, P. R. (1993) Induction of class I major histocompatibility complex antigens on adult primate retinal neurons.Journal of Neuroimmunology 43, 45–57.Google Scholar
  32. Sarvetnick, N., Shizuru, J., Liggett, D., Martin, L., Mcintyre, B., Gregory, A., Parslow, T. &Steward, T. (1990) Loss of pancreatic islet tolerance induced by β-cell expression of interferon-γ.Nature 346, 844–9.Google Scholar
  33. Snider, W. D. &Thanedar, S. (1989) Target dependence of hypoglossal motor neurons during development and in maturity.Journal of Comparative Neurology 279, 489–98.Google Scholar
  34. Streit, W. J., Graeber, M. B. &Kreutzberg, G. W. (1989) Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury.Experimental Neurology 105, 115–26.Google Scholar
  35. Van Der Meide, P. H., Borman, H. G., Dubbeld, M. A., Botman, C. A. D. &Schellekens, H. (1989) Isolation and characterization of monoclonal antibodies directed to rat interferon-gamma.Lymphokine Research 8, 439–49.Google Scholar
  36. Verge, V. M. K., Xu, Z., Xu, X.-J., Wiesenfeld-Hallin, Z. &Hökfelt, T. (1992) Marked increase in nitric oxide synthase mRNA in rat dorsal root ganglia after peripheral axotomy:in situ hybridization and functional studies.Proceedings of the National Academy of Sciences (USA) 89, 11617–21.Google Scholar
  37. Wu, W. (1993) Expression of nitric-oxide synthase (NOS) in injured CNS neurons as shown by NADPH diaphorase histochemistry.Experimental Neurology 120, 153–9.Google Scholar
  38. Wu, W. &Li, L. (1993) Inhibition of nitric oxide synthase reduces motoneuron death due to spinal root avulsion.Neuroscience Letters 153, 121–4.Google Scholar
  39. Zhang, X., Verge, V., Wiesenfeld-Hallin, Z., Ju, G., Bredt, D., Snyder, S. H. &Hökfelt, T. (1993) Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy.Journal of Comparative Neurology 335, 563–75.Google Scholar

Copyright information

© Chapman and Hall 1994

Authors and Affiliations

  • K. Kristensson
    • 1
  • M. Aldskogius
    • 1
  • Z. -C. Peng
    • 3
  • T. Olsson
    • 2
  • H. Aldskogius
    • 1
  • M. Bentivoglio
    • 3
  1. 1.Department of NeuroscienceKarolinska InstituteStockholmSweden
  2. 2.Department of Clinical NeuroscienceHuddinge University HospitalStockholmSweden
  3. 3.Institute of Anatomy and HistologiUniversity of VeronaVeronaItaly

Personalised recommendations