Advertisement

Journal of Neurocytology

, Volume 22, Issue 1, pp 1–13 | Cite as

An immunogold electron microscopic analysis of FMRFamide-like immunoreactive neurons in the CNS ofHelix pomatia: ultrastructure and synaptic connections

  • K. Elekes
  • J. Ude
Article

Summary

The ultrastructure and synaptic connections of FMRFamide-like immunoreactive neurons were investigated in the CNS of the snailHelix pomatia, following the application of a post-embedding immunogold method. For comparison, first, we analyzed the ultrastructure and granule content of the identified FMRFamide-containing C3 neuron in the cerebral ganglion. Three types of unidentified immunoreactive neuronal perikarya, and five types of varicosities could be distinguished on the basis of granule content. The different granule types revealed a highly selective accumulation of gold particles. One granule type contained by one FMRFamide-like immunoreactive neuron type (N1) and by one varicosity type (T2) showed similar ultrastructure to that of the granules seen in the C3 cell. In the neuropil, the majority of FMRFamide-like immunoreactive varicosities (four of the five varicosity types) established specialized synaptic contacts with unidentified postsynaptic profiles. In the connective tissue sheath around the ganglia, three types of FMRFamide-like immunoreactive varicosities were found to establish unspecialized contacts with smooth muscle fibres or to be free in the mass of collagen fibres. On the basis of these observations, we suggest (1) an extensive diversity of the localization of FMRFamide (and related substances) at the ultrastructural level; (2) the involvement of FMRFamide-like immunoreactive varicosities in synaptic, modulatory and neurohormonal regulatory processes in theHelix nervous system.

Keywords

Electron Microscopic Analysis Synaptic Connection Synaptic Contact Neuron Type Cerebral Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbiser, Z. K. &Beltz, B. B. (1991) SCPB- and FMRFamide- like immunoreactivities in lobster neurons: colocalization of distinct peptides or colabeling of the same peptide(s)?Journal of Comparative Neurology 306, 417–24.PubMedGoogle Scholar
  2. Bewick, G. S., Price, D. A. &Cottrell, G. A. (1990) The fast response mediated by the C3 motoneurone ofHelix is not attributable to the contained FMRFamide.Journal of Experimental Biology,148, 201–19.Google Scholar
  3. Brzezina, V., Eckert, R. &Erxleben, C. (1985) Modulation of potassium conductances by exogenous neuropeptide in neurones ofAplysia californica.Journal of Physiology,382, 267–90.Google Scholar
  4. Buckett, K. J., Peters, M., Dockray, G. J., Van Minnen, J. &Benjamin, P. R. (1990) Regulation of heartbeat inLymaea by motoneurones containing FMRFamide-like peptides.Journal of Neurophysiology 63, 1426–35.PubMedGoogle Scholar
  5. Colombaioni, L., Paupardin-Tritsch, D., Vidal, P. P. &Gerschenfeld, H. M. (1985) The neuropeptide FMRFamide decreases both the conductance and a cyclic 3′,5′-adenosine monophosphate-dependent K+ conductance in identified molluscan neurons.Journal of Neuroscience 5, 2533–8.PubMedGoogle Scholar
  6. Cardot, J. &Fellman, D. (1983) Immunofluorescent evidence of an FMRFamide-like peptide in the peripheral nervous system of the gastropod molluscHelix aspersa.Neuroscience Letters 43, 167–72.PubMedGoogle Scholar
  7. Church, P. J. &Lloyd, P. E. (1991) Expression of diverse neuropeptide cotransmitters by identified motor neurons inAplysia.Journal of Neuroscience 11, 618–25.PubMedGoogle Scholar
  8. Cook, I. R. C. &Gelperin, A. (1988) Distribution of FMRFamide-like immunoreactivity in the nervous system of the slugLimax maximus.Cell and Tissue Research 253, 69–76.PubMedGoogle Scholar
  9. Cottrell, G. A., Schot, L. P. &Dockray, G. J. (1983) Identification and probable role of a single neurone containing the neuropeptideHelix FMRFamide.Nature 304, 638–40.PubMedGoogle Scholar
  10. Cottrell, G. A., Davies, N. W. &Green, K. A. (1984) Multiple actions of molluscan neuropeptide and related peptides on identifiedHelix neurones.Journal of Physiology 356, 315–33.PubMedGoogle Scholar
  11. Cottrell, G. A. (1989) The biology of FMRFamide-series of peptides in molluscs with special reference toHelix.Comparative Biochemistry and Physiology 93A, 41–5.Google Scholar
  12. Cottrell, G. A., Green, K. A. &Davies, N. W. (1990) The neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) can activate a ligang-gated ion channel inHelix neurones.Pflügers Archiv 416,. 612–14.Google Scholar
  13. Ebberink, R. H. M., Price, D. A., Lenhout, H. Van, Doble, K. E., Riehm, J. P., Geraerts, W. P. M. &Greenberg, M. J. (1987) The brain ofLymnaea contains a family of FMRFamide like peptides.Peptides 8, 515–22.PubMedGoogle Scholar
  14. Elekes, K. (1991) Serotonin-immunoreactive varicosities in the cell body layer and neural sheath of the snail,Helix pomatia, ganglia: an electron microscopic immunocytochemical study.Neuroscience 42, 583–91.PubMedGoogle Scholar
  15. Elekes, K. (1992) Neurotransmitters in the gastropod CNS: comparative immunocytochemistry.Acta Biologica Hungarica 43, 213–20.PubMedGoogle Scholar
  16. Elekes, K. &Nässel, D. R. (1990) Distribution of FMRF-amide-like immunoreactive neurons in the central nervous system of the snailHelix pomatia.Cell and Tissue Research 262, 177–90.Google Scholar
  17. Elekes, K., Florey, E. &Cahill, M. A. (1988) Morphology and central synaptic connections of the efferent neurons innervating the crayfish hindgut.Cell and Tissue Research 254, 369–79.Google Scholar
  18. Hökfelt, T., Johansson, O., Ljungdahl, Á., Lundberg, J. M. &Schultzberg, M. (1980) Peptidergic neurones.Nature 284, 515–21.PubMedGoogle Scholar
  19. Kobayashi, M. (1987) Innervation and control of the heart of a gastropod.Experientia 43, 981–86.Google Scholar
  20. Kobayashi, M. &Muneoka, Y. (1990) Structure and action of molluscan neuropeptides.Zoological Science 7, 801–14.Google Scholar
  21. Kobierski, L. A., Beltz, B. S., Trimmer, B. A. &Kravitz, E. A. (1987) FMRFamide-like peptides ofHomarus americanus: Distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities.Journal of Comparative Neurology 266, 1–15.PubMedGoogle Scholar
  22. Kreiner, T., Sossin, W. &Scheller, R. H. (1986) Localization ofAplysia neurosecretory peptides to multiple populations of dense core vesicles.Journal of Cell Biology 102, 769–82.PubMedGoogle Scholar
  23. Lehman, H. K. &Greenberg, M. J. (1987) The actions of FMRFamide-like peptides on visceral and somatic muscles of the snailHelix aspersa.Journal of Experimental Biology 131, 55–68.PubMedGoogle Scholar
  24. Lehman, H. K. &Price, D. A. (1987) Localization of FMRFamide-like peptides in the snailHelix aspersa.Journal of Experimental Biology 131, 37–53.PubMedGoogle Scholar
  25. Linacre, A., Kellett, E., Saunders, S., Bright, K., Benjamin, P. R. &Burke, J. F. (1991) Cardioactive neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) and novel related peptides are encoded in multiple copies by a single gene in the snailLymnaea stagnalis.Journal of Neuroscience 10, 412–19.Google Scholar
  26. Lloyd, P. E., Kupferman, I. &Weiss, K. R. (1987) The sequence of small cardioactive peptide A: a second member of a class of neuropeptides inAplysia.Peptides 8, 179–84.PubMedGoogle Scholar
  27. Morris, H. R., Panico, M., Karplus, A., Lloyd, P. E. &Riniker, B. (1982) Elucidation by FAB-MS of the structure of a new cardioactive peptide fromAplysia.Nature 300, 643–5.PubMedGoogle Scholar
  28. Murphy, A. D., Lukowiak, K. &Stell, W. K. (1985) Peptidergic modulation of patterned motor activity in identified neurones inHelisoma.Proceedings of National Academy of Sciences (USA) 82, 7140–4.Google Scholar
  29. Nässel, D. R. &Elekes, K. (1985) Serotonergic terminals in the neural sheath of the blowfly nervous system: ultrastructural immunocytochemistry and 5,7-dihydroxytryptamine labelling.Neuroscience 15, 293–307.PubMedGoogle Scholar
  30. Nässel, D. R. &O'Shea, M. (1987) Proctolin-like immunoreactive neurons in the blowfly central nervous system.Journal of Comparative Neurology 265, 437–54.PubMedGoogle Scholar
  31. Price, D. A. &Greenberg, M. J. (1977) Purification and characterization of a cardio-excitatory neuropeptide from the central ganglia of a bivalve mollusc.Preparative Biochemistry 7, 50–62.Google Scholar
  32. Price, D. A., Davies, N. W., Doble, K. E. &Greenberg, M. J. (1987) The distribution of FMRFamide-related peptides in molluscs.Zoological Science 4, 395–410.Google Scholar
  33. Roth, J. (1983) The colloid gold marker system for light- and electron microscopic cytochemistry. InTechniques in Immunocytochemistry, Vol. 2. (edited byBullock, G. R. &Petrusz, P.) pp. 217–84. London, New York: Academic Press.Google Scholar
  34. S.-Rózsa, K. (1987) Organization of the multifunctional network regulating visceral organs inHelix pomatia L. (Mollusca, Gastropoda).Experientia 43, 965–72.Google Scholar
  35. Schaefer, M., Picciotto, M. R., Kreiner, T., Kaldany, R., Taussig, R. &Scheller, R. (1985)Aplysia neurons express a gene encoding multiple FMRFamide neuropeptides.Cell 41, 457–67.PubMedGoogle Scholar
  36. Schot, L. P. C. &Boer, H. H. (1982) Immunocytochemical demonstration of peptidergic cells in the pond snailLymnaea stagnalis with an antiserum to the molluscan cardioacive neuropeptide FMFR-amide.Cell and Tissue Research 225, 347–54.PubMedGoogle Scholar
  37. Slot, J. W. &Geuze, H. J. (1984) Gold markers for single and double immunolabelling of ultrathin cryosections. InImmunolabelling for Electron Microscopy (edited byPolak, J. M. &Varndell, I. M.) pp. 129–42. Amsterdam, New York, Oxford: Elsevier.Google Scholar
  38. Stern, S. A., Lewis, R. V., Kimura, S., Rossier, J., Gerger, L. D., Brink, L., Stein, S. &Udenfriend, S. (1979) Isolation of the opioid heptapeptide Metenkephalin-[Arg6-Phe7] from bovine adrenal medullary granules and striatum.Proceedings of National Academy of Sciences (USA) 76, 6680–3.Google Scholar
  39. Sternberger, L. A. (1979)Immunocytochemistry. 2nd ed. Chichester: John Wiley and Son.Google Scholar
  40. Ude, J. &Eckert, M. (1988) Submicroscopic characterization of proctolin-like immunoreactivity in the nervous system of the cockroach.Periplaneta americana L.Cell and Tissue Research 254, 197–202.Google Scholar
  41. Weiss, S., Goldberg, J. L., Chohan, K. S., Stell, W. K., Drummond, G. I. &Lukowiak, K. (1984) Evidence for FMRFamide as neurotransmitter in the gill ofAplysia californica.Journal of Neuroscience 4, 1994–2000.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1993

Authors and Affiliations

  • K. Elekes
    • 1
  • J. Ude
    • 2
  1. 1.Balaton Limnological Research Institute of the Hungarian Academy of SciencesTihanyHungary
  2. 2.Department of Electron Microscopy, Institute of General Zoology and Animal PhysiologyFriedrich-Schiller-UniversityJenaFRG

Personalised recommendations