Advertisement

Chromosoma

, Volume 29, Issue 1, pp 88–117 | Cite as

In situ analysis of normal and abnormal patterns of the mitotic apparatus in cultured rat-kangaroo cells

  • Waheeb K. Heneen
Article

Abstract

Dividing cells in monolayers of the rat-kangaroo (Potorous tridactylis) cell line Pt-K1 have large spindles and are flat, thus making possible studies of interactions between the achromatic and chromatic parts of the mitotic apparatus during the cell cycle. At prophase, asters and centrioles seem to exert pressure on the nuclear membrane leading to its rupture and penetrance of the centrioles. Apparently, the long axis of the spindle is shorter than the nuclear diameter. What appears as persistent, large portions of the nuclear membrane were observed in some metaphase and anaphase cells. Such a condition might also indicate an arrested mitosis. The midbody, which was often bipartite, was found to be of a ribonucleoprotein nature. — Three-group metaphases were of common occurrence and might represent early stages of chromosome orientation preceding the final alignment of the chromosomes on the equatorial plate. They could also be an expression of an anomalous condition as a result of mitotic arrest during prometaphase owing to spindle inactivation or breakage, errors in centromere-spindle attachments, interference with chromosome movement, or a duplicated centriolar constitution. Most of these aberrations could be attributed to the flatness of dividing cells, which might also bring about the failure of centriole separation and spindle organization in prometaphase stages, as well as multipolar mitosis.De novo organization of half spindles might take place in cells with ruptured spindles. Anaphase cells showing signs of a previous three-group orientation were rare. — Multipolar mitoses were prevalent mainly in cells with high chromosome numbers. They were often star-shaped with the chromosomes oriented between opposite and adjacent poles, and rarely as end-to-end associations of spindles. Apparently, one or more centrioles might share a common polar region. Multipolar configurations have either a mono- or multinuclear origin. Nuclei usually enter division synchronously in binucleate cells and the spindles become organized between centrioles associated with individual or different nuclei.

Keywords

Mitotic Arrest Binucleate Cell Chromosome Movement Mitotic Apparatus Nuclear Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajer, A., Molé-Bajer, J.: Cine analysis of some aspects of mitosis in endosperm. In: Cinemicrography in cell biology (ed. G. G. Rose), p. 357–409. New York: Academic Press 1963.Google Scholar
  2. Biesele, J. J.: Mitotic poisons and the cancer problem. Amsterdam: Elsevier Publ. Co. 1958.Google Scholar
  3. Bloom, W., Zirkle, R. E., Uretz, R. B.: Irradiation of parts of individual cells. III. Effects of chromosomal and extrachromosomal irradiation on chromosome movements. Ann. N. Y. Acad. Sci.59, 503–513 (1955).PubMedGoogle Scholar
  4. Bootsma, D., Budke, L., Vos, O.: Studies on synchronous division of tissue culture cells initiated by excess thymidine. Exp. Cell Res.33, 301–309 (1964).PubMedGoogle Scholar
  5. Brinkley, B. R., Stubblefield, E., Hsu, T. C.: The effects of colcemid inhibition and reversal on the fine structure of the mitotic apparatus of Chinese hamster cellsin vitro. J. Ultrastruct. Res.19, 1–18 (1967).PubMedGoogle Scholar
  6. Buck, R. C.: The central spindle and the cleavage furrow. In: The cell in mitosis (ed. L. Levine), p. 55–65. New York: Academic Press 1963.Google Scholar
  7. —, Tisdale, J. M.: The fine structure of the mid-body of the rat erythroblast. J. Cell Biol.13, 109–115 (1962a).PubMedGoogle Scholar
  8. — —, Tisdale, J. M.: An electron microscopic study of the development of the cleavage furrow in mammalian cells. J. Cell Biol.13, 117–125 (1962b).PubMedGoogle Scholar
  9. Carlson, J. G.: On the mitotic movements of chromosomes. Science124, 203 (1956).PubMedGoogle Scholar
  10. Cleveland, L. R.: Functions of flagellate and other centrioles in cell reproduction. In: The cell in mitosis (ed. L. Levine), p. 3–53. New York: Academic Press 1963.Google Scholar
  11. Coleman, P. G.: In: Cytology (eds. G. B. Wilson and J. H. Morrison), p. 122. New York: Reinhold Publ. Corp. 1961.Google Scholar
  12. Dietz, R.: Centrosomenfreie spindelpole in tipuliden-spermatocyten. Z. Naturforsch.14b, 749–752 (1959).Google Scholar
  13. —: The dispensability of the centrioles in the spermatocyte divisions ofPales ferruginea (Nematocera). In: Chromosomes today, vol. I (eds. C. D. Darlington and K. R. Lewis), p. 161–166. Edinburgh and London: Oliver and Boyd 1966.Google Scholar
  14. George, P., Journey, L. J., Goldstein, M. N.: Effect of vincristine on the fine structure of HeLa cells during mitosis. J. nat. Cancer Inst.35, 355–361 (1965).PubMedGoogle Scholar
  15. Guttes, E., Guttes, S., Rusch, H. P.: Morphological observations on growth and differentiation ofPhysarum polycephalum grown in pure culture. Develop. Biol.3, 588–614 (1961).PubMedGoogle Scholar
  16. Heneen, W. K.: Rat-kangaroo cells in culture: A suitable material for studies on the mitotic apparatus and chromosome orientation. Proc. XII Int. Congr. Genet., vol. I, p. 196 (1968).Google Scholar
  17. -Nichols, W. W., Levan, A., Norrby, E.: Polykaryocytosis and mitosis in a human cell line after treatment with measles virus. Hereditas (Lund)64, (in press) (1970).Google Scholar
  18. Huettner, A. F.: Continuity of the centrioles inDrosophila melanogaster. Z. Zellforsch.19, 119–134 (1933).Google Scholar
  19. Inoué, S., Bajer, A.: Birefringence in endosperm mitosis. Chromosoma (Berl.)12, 48–63 (1961).Google Scholar
  20. Kawamura, K.: Studies on cytokinesis in neuroblasts of the grasshopper,Chortophaga viridifasciata (De Geer). I. Formation and behavior of the mitotic apparatus. Exp. Cell Res.21, 1–8 (1960).PubMedGoogle Scholar
  21. Kleinfeld, R. G., Sisken, J. E.: Morphological and kinetic aspects of mitotic arrest by and recovery from colcemid. J. Cell Biol.31, 369–379 (1966).PubMedGoogle Scholar
  22. Krishan, A., Buck, R. C.: Structure of the mitotic spindle in L strain fibroblasts. J. Cell Biol.24, 433–444 (1965).PubMedGoogle Scholar
  23. Levan, A., Nichols, W. W., Peluse, M., Coriell, L. L.: The stemline chromosomes of three cell lines representing different vertebrate classes. Chromosoma (Berl.)18, 343–358 (1966).Google Scholar
  24. Levan, G.: Contributions to the chromosomal characterization of the PTK 1 rat-kangaroo cell line. Hereditas (Lund)64, (in press) (1970).Google Scholar
  25. Levis, A. G.: Effetti dei raggi X sulla mitosi di cellule di mammiferi cultivatein vitro. Caryologia (Firenze)15, 59–86 (1962).Google Scholar
  26. —, Marin, G.: Induction of multipolar spindles by X-radiation in mammalian cellsin vitro. Exp. Cell Res.31, 448–451 (1963).PubMedGoogle Scholar
  27. Mazia, D.: Mitosis and the physiology of cell division. In: The cell (eds. J. Brachet and A. E. Mirsky), p. 77–412. New York: Academic Press 1961.Google Scholar
  28. —, Harris, P. J., Bibring, T.: The multiplicity of the mitotic centers and the time course of their duplication and separation. J. biophys. biochem. Cytol.7, 1–20 (1960).Google Scholar
  29. Melander, Y.: Chromatid tension and fragmentation during the development ofCalliphora erythrocephala Meig. (Diptera). Hereditas (Lund)49, 91–106 (1963).Google Scholar
  30. —, Wingstrand, K. G.: Gomori's hematoxylin as a chromosome stain. Stain Technol.28, 217–223 (1953).PubMedGoogle Scholar
  31. Murray, R. G., Murray, A. S., Pizzo, A.: The fine structure of mitosis in rat thymic lymphocytes. J. Cell Biol.26, 601–619 (1965).PubMedGoogle Scholar
  32. Oftebro, R.: Further studies on mitosis of bi- and multinucleate HeLa cells. Scand. J. clin. Lab. Invest.22 (Suppl. 106), 79–96 (1968).PubMedGoogle Scholar
  33. —, Wolf, I.: Mitosis of bi- and multinucleate HeLa cells. Exp. Cell Res.48, 39–52 (1967).PubMedGoogle Scholar
  34. Parmentier, R.: Production of ‘three-group metaphases’ in the bone-marrow of the golden hamster. Nature (Lond.)171, 1029–1030 (1953).Google Scholar
  35. —, Dustin, P., Jr.: Early effects of hydroquinone on mitosis. Nature (Lond.)161, 527–528 (1948).Google Scholar
  36. —, Dustin, P., Jr.: Reproduction expérimental d'une anomalie particulière de la métaphase des cellules malignes (métaphase “à trois groupes”). Caryologia (Firenze)4, 98–109 (1951).Google Scholar
  37. Pollister, A. W.: Notes on the centrioles of amphibian tissue cells. Biol. Bull.65, 529–545 (1933).Google Scholar
  38. Rao, P. N., Engelberg, J.: Mitotic non-disjunction of sister chromatids and anomalous mitosis induced by low temperatures in HeLa cells. Exp. Cell Res.43, 332–342 (1966).PubMedGoogle Scholar
  39. — —: Structural specificity of estrogens in the induction of mitotic chromatid non-disjunction in HeLa cells. Exp. Cell Res.48, 71–81 (1967).PubMedGoogle Scholar
  40. Robbins, E., Gonatas, N. K.: The ultrastructure of a mammalian cell during the mitotic cycle. J. Cell Biol.21, 429–463 (1964a).PubMedGoogle Scholar
  41. — —: Histochemical and ultrastructural studies on HeLa cell cultures exposed to spindle inhibitors with special reference to the interphase cell. J. Histochem. Cytochem.12, 704–711 (1964b).PubMedGoogle Scholar
  42. —, Jentzsch, G., Micali, A.: The centriole cycle in synchronized HeLa cells. J. Cell Biol.36, 329–339 (1968).PubMedGoogle Scholar
  43. Schmid, W.: Multipolar spindles after endoreduplication. Exp. Cell Res.42, 201–204 (1966).PubMedGoogle Scholar
  44. Sentein, P.: L'action cytologique du dioxyde de sélénium pendant la segmentation de l'œuf dePleurodeles waltlii Michah. Chromosoma (Berl.)17, 336–366 (1965).Google Scholar
  45. —: L'égalité fonctionnelle des pôles dans les mitoses pluripolaires déterminées par le phényluréthane. Démonstration par l'action secondaire des dérivés de la quinoline. Chromosoma (Berl.)20, 44–53 (1966).Google Scholar
  46. —: Action de l'acide butyrique sur l'appareil mitotique de segmentation chezTriturus helveticus Raz. Chromosoma (Berl.)24, 67–99 (1968).Google Scholar
  47. Seto, T., Kezer, J., Pomerat, C. M.: A cinematographic study of meiosis in salamander spermatocytesin vitro. Z. Zellforsch.94, 407–424 (1969).PubMedGoogle Scholar
  48. Sharman, G. B., Barber, H. N.: Multiple sex-chromosomes in the marsupialPotorous. Heredity6, 345–355 (1952).Google Scholar
  49. Sinha, A. K.: Spontaneous occurrence of tetraploidy and near-haploidy in mammalian peripheral blood. Exp. Cell Res.47, 443–448 (1967).PubMedGoogle Scholar
  50. Sisken, J. E., Wilkes, E., Donnelly, G. M., Kakefuda, T.: The isolation of the mitotic apparatus from mammalian cells in culture. J. Cell Biol.32, 212–216 (1967).PubMedGoogle Scholar
  51. Specht, W.: Bildung, Bau und Funktion des sog. achromatischen Teilungsapparates der Zelle, erläutert am Beispiel der Reifungsspindel im Ei vonTubifex. Z. Anat. Entwickl.-Gesch.122, 266–288 (1961).Google Scholar
  52. Teplitz, R. L., Gustafson, P. E., Pellett, D. L.: Chromosomal distribution in interspecificin vitro hybrid cells. Exp. Cell Res.52, 379–391 (1968).PubMedGoogle Scholar
  53. Tjio, J. H., Levan, A.: Chromosome analysis of three hyperdiploid ascites tumours of the mouse. Lunds Univ. Årsskr.50, 39 p. (1954).Google Scholar
  54. Wada, B.: Analysis of mitosis. Cytologia (Tokyo),30, Suppl. 158 p. (1966).Google Scholar
  55. Walen, K. H., Brown, S. W.: Chromosomes in a marsupial (Potorous tridactylis) tissue culture. Nature (bond.)194, 406 (1962).Google Scholar
  56. Walters, M. S.: Rates of meiosis, spindle irregularities and microsporocyte division inBromus trinii ×B. carinatus. Chromosoma (Berl.)11, 167–204 (1960).Google Scholar
  57. Went, H. A.: The behavior of centrioles and the structure and formation of the achromatic figure. Protoplasmatologia VI/G/1, 109 p. Wien and New York: Springer 1966.Google Scholar
  58. Wilson, E. B.: The cell in development and inheritance, 3rd ed. London: MacMillan (1925).Google Scholar
  59. Zirkle, R. E.: Cellular changes following irradiation. In: National Acad. Sci. — Nat. Res. Council Publ. 410 (eds. H. M. Patt and E. L. Powers), p. 1–45. 1956.Google Scholar
  60. —: Partial-cell irradiation. Advanc. biol. med. Phys.5, 103–146 (1957).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Waheeb K. Heneen
    • 1
  1. 1.Institute of GeneticsUniversity of LundSweden

Personalised recommendations