Mathematische Zeitschrift

, Volume 198, Issue 1, pp 127–141

Discreteness conditions for the Laplacian on complete, non-compact Riemannian manifolds

  • Regina Kleine
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baider, A.: Noncompact Riemannian Manifolds with Discrete Spectra. J. Differ. Geom.14, 41–57 (1979)Google Scholar
  2. 2.
    Bishop, R., Crittenden, R.: Geometry of manifolds. New York: Academic Press 1964Google Scholar
  3. 3.
    Brooks, R.: A relation between Growth and the Spectrum of the Laplacian. Math. Z.178, 501–508 (1981)Google Scholar
  4. 4.
    Brooks, R.: On the spectrum of noncompact manifolds with finite volume. Math. Z.187, 425–432 (1984)Google Scholar
  5. 5.
    Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal.12, 401–414 (1973)Google Scholar
  6. 6.
    Do Carmo, M.P.: Differential geometry of curves and surfaces, Englewood Cliffs: Prentice Hall 1976Google Scholar
  7. 7.
    Donnelly, H.: On the essential spectrum of a complete Riemannian manifold. Topology20, 1–14 (1981)Google Scholar
  8. 8.
    Donnelly, H., Li, P.: Pure point spectrum and negative curvature for noncompact manifolds. Duke Math. J. 46, 497–593 (1979)Google Scholar
  9. 9.
    Eichhorn, J.: Riemannsche Mannigfaltigkeiten mit einer zylinderähnlichen Endenmetrik. Math. Nachr.114, 23–51 (1983)Google Scholar
  10. 10.
    Gaffney, P.: The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. USA37, 48–50 (1951)Google Scholar
  11. 11.
    Gage, M.E.: Upper bounds for the first eigenvalue of the Laplace-Beltrami operator. Indiana Univ. Math. J.29, 897–912 (1980)Google Scholar
  12. 12.
    Glazman, I.M.: Direct methods of qualitative spectral analysis of singular differential operators. Jerusalem (1965)Google Scholar
  13. 13.
    Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Großen. Lecture Notes in Math.55. Berlin Heidelberg New York: Springer 1975Google Scholar
  14. 14.
    Hartman, P.: Ordinary differential equations. New York: John Wiley and Sons Inc. 1984Google Scholar
  15. 15.
    Heintze, E., Karcher, H.: A general comparison theorem with applications to volume estimates for submanifolds. Ann. Scient. Ec. Norm. Sup. 4o serie, t 11, 451–470 (1970)Google Scholar
  16. 16.
    Kufner, A., John, O., Fučik, S.: Function spaces. Leyden: Nordhoff 1977Google Scholar
  17. 17.
    Maslov, V.P.: A criterion for discreteness of the spectrum of a Strurm-Liouville equation with an operator coefficient. Funct. Anal. Appl.2, 153–157 (1968)Google Scholar
  18. 18.
    Müller-Pfeiffer, E.: Spektraleigenschaften singulärer gewöhnlicher Differentialoperatoren. Leipzig: Teubner 1977Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Regina Kleine
    • 1
  1. 1.Fachbereich Mathematik der Universität Duisburg-GesamthochschuleDuisburgFederal Republic of Germany

Personalised recommendations