Water, Air, and Soil Pollution

, Volume 82, Issue 1–2, pp 227–238 | Cite as

Dynamics of the dead wood carbon pool in northwestern Russian boreal forests

  • O. N. Krankina
  • M. E. Harmon
Part II Nutrient and Carbon Cycling


Our study examines dead wood dynamics in a series of permanent plots established in closed, productive second-growth forest stands of north-west Russia and in temporary plots that represent different successional stages and types of disturbance. Dead wood stores measured on 63 plots 0.2–1.0 ha in size range from 1–8 Mg C ha−1 in young to mature intensively managed stands, 17 Mg C ha−1 in an old-growth forest, 20 Mg C ha−1 on a clear-cut, and 21–39 Mg C ha−1 following a severe windthrow. A total of 122 logs, snags, and stumps aged by long-term plot records was sampled for decay rates and to develop a system of decay classes. Annual decomposition rates are: 3.3% for pine, 3.4% for spruce, and 4.5% for birch. Based on these decay rates the average residence time of carbon (C) in the dead wood pool is 22–30 years. The mortality input on the permanent plots was 23–60 Mg C ha−1 over 60 years of observation or 15–50% of the total biomass increment. This data suggests a dead wood mass of 10–22 Mg C ha−1 would be expected in these mature forests if salvage had not occurred. In old-growth forests, dead wood comprised about 20% of the total wood mass, a proportion quite similar to the larger, more productive forests of the Pacific Northwest (USA). If this proportioning is characteristic of cool conifer forests it would be useful to estimate potential dead wood mass for old-growth forests without dead wood inventories. However, the use of a single live/dead wood ratio across the range of successional stages, a common practice in C budget calculations, may substantially over-or under-estimate the dead wood C pool depending upon the type of disturbance regime. Intensive forest management including short harvest rotations, thinning and wood salvage reduces dead wood C stores to 5–40% of the potential level found in undisturbed old-growth forest. In contrast, natural disturbance increases dead wood C pool by a factor of 2–4.


dead wood carbon cycle Russian forests decay rates biomass pools 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agee, J. K. and Huff, M. H.: 1987,Can. J. For. Res. 17, 697–704.Google Scholar
  2. Auclair, A. N. D.: 1985,Can. J. For. Res. 15, 279–291.Google Scholar
  3. Birdsey, R. A.: 1992,Gen. Tech. Rep. WO-59, 51 pp.Google Scholar
  4. Busse, M. D.: 1994,Soil Sci. Soc. Am. J. 58, 221–227.Google Scholar
  5. Cohen, W. B., Wallin, D. O., Harmon, M. E. and Fiorella, M.: (Unpublished manuscript).Google Scholar
  6. Dale, V. H., Houghton, R. H. and Hall, C. A. S.: 1991.Can. J. For. Res. 21, 87–90.Google Scholar
  7. Dixon, R. K. and Krankina, O. N.: 1993,Can. J. For. Res. 23, 700–705.Google Scholar
  8. Dixon, R. K., Schroeder, P. E. and Winjum, J. K.: 1991, EPA report 600/3-91/067.Google Scholar
  9. Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C. and Wisniewski J.: 1994,Science 263, 185–190.Google Scholar
  10. Edwards, P. J. and Grubb, P. J.: 1977,J. Ecol. 65, 943–969.Google Scholar
  11. Fahey, T. J.: 1983,Ecol. Monogr. 53, 51–72.Google Scholar
  12. Foster, J. R. and Lang, G. E.: 1982,Can. J. For. Res. 12, 617–626.Google Scholar
  13. Franklin, J. F., Bledsoe, C. S. and Callahan, J. T.: 1990,Bioscience 40, 509–523.Google Scholar
  14. Franklin, J. F., Shugart, H. H. and Harmon, M. E.; 1987,Bioscience 37, 550–556.Google Scholar
  15. Gore, J. A. and Patterson, W. A. III: 1986,Can. J. For. Res. 16, 335–339.Google Scholar
  16. Grier, C. C. and Logan, R. S.: 1977,Ecol. Monogr. 47, 373–400.Google Scholar
  17. Harmon, M. E. and Chen, H.: 1991,Bioscience 41, 604–610.Google Scholar
  18. Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack, K. Jr. and Cummins, K.: 1986,Adv. Ecol. Res. 15, 133–302.Google Scholar
  19. Harmon, M. E., Cromack, K. Jr. and Smith, B. G.; 1987.Can. J. For. Res. 17, 1265–1272.Google Scholar
  20. Harmon, M. E., Ferrell, W. K. and Franklin, J. F.: 1990,Science 247, 699–702.Google Scholar
  21. Harmon, M. E., Brown, S. and Gower, S. T.: 1993, In: Vinson, T. S. and Kolchugina, T. P. (eds.)Carbon Cycling in Boreal and Sub-Arctic Ecosystems, EPA Number 600-93/084, Corvallis, USA, pp. 167–178.Google Scholar
  22. Harmon, M. E., Whigham, D. F. and Sexton, J.:Biotropica, (In press).Google Scholar
  23. Houghton, R. A. and Woodwell G. M.: 1989,Sci. Amer. 260, 36–44.Google Scholar
  24. Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., and Skole, D. L.: 1987,Tellus B39, 122–139.Google Scholar
  25. Johnson, E. A. and Greene, D. F.: 1991,J. Veg. Sci. 2, 523–530.Google Scholar
  26. Kauffman, J. B., Uhl, C. and Cummings, D. L.: 1988,Oikos 53, 167–175.Google Scholar
  27. Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G. and Roeloffzen, H. J.: 1989,Geophysical Monogr. 55, 165–236.Google Scholar
  28. King, G. and Neilson, R. P.: 1992,Water, Air, and Soil Pollution 64, 365–383.Google Scholar
  29. Kobak, K. I.: 1988,Biotical Compounds of Carbon Cycle. Gidrometeoizdat Publishers, Leningrad, Russia.Google Scholar
  30. Kolchugina, T. P. and Vinson, T. S.: 1993,Water, Air, and Soil Pollution 70, 207–221.Google Scholar
  31. Krankina O. N. and Harmon, M. E.: 1994,World Resour. Rev. 6(2), 161–177.Google Scholar
  32. Krankina, O. N., Dixon, R. K., Shvidenko, A.Z. and Selikhovkin, A. V.:World Resour. Rev. Google Scholar
  33. Lamas, T. and Fries, C.: 1995, In: Forest Survey Designs: ‘Simplicity versus Efficiency’ and the assessment of Non-timber Resources, Proceedings of Conference, 2–7 May, 1994, Monte Verità, Switzerland, Swiss Federal Institute of Technology, Swiss Federal Institute of Forest, Snow and Landscape Research, and IUFRO S4.02/S4.11. (In press.)Google Scholar
  34. Little, S. N. and Ohmann, J. L.: 1988,Forest Science 34, 152–164.Google Scholar
  35. Lambert, R. C., Lang, G. E. and Rieners, W. A.: 1980,Ecology 61, 1460–1473.Google Scholar
  36. McFee, W. W. and Stone, E. L.: 1966,Soil Sci. Soc. Am. Proc. 30, 513–516.Google Scholar
  37. Melillo, J. M., Fruci, J. R. and Houghton, H. A.: 1988,Tellus B40, 116–128.Google Scholar
  38. Miller, W. E.: 1983,Forest Science 29, 351–356.Google Scholar
  39. Muller, R. N. and Liu, Y.: 1991,Can. J. For. Res. 21, 1567–1572.Google Scholar
  40. Onega, T. L. and Eickmeier, W. G.: 1991Bull. Torrey Bot. Club 118, 52–57.Google Scholar
  41. Post, W. M., Peng, T. H., Emanuel, W. R., King, A. W., Dale, V. H., and DeAngelis, D. L.: 1990,American Scientist 78, 310–326.Google Scholar
  42. Sarmiento, J. L.: 1993,Nature 365, 697–698.Google Scholar
  43. Schlesinger, W. H.: 1990,Nature 348, 232–234.Google Scholar
  44. Sedjo, R. A. and Solomon, A. M.: 1991,In: Greenhouse Warming: Abatement and Adaptation. Proceedings for the Workshop, Washington, USA. pp. 105–19.Google Scholar
  45. Sennov, S. N.: 1984,Tending the Forest: Ecological Basis. Lesnaya Promyshlennost, Moscow, Russia, [In Russian]Google Scholar
  46. Sollins, P.: 1982,Can. J. For. Res. 12, 18–28 1982Google Scholar
  47. Sollins, P., Cline, S. P., Verhoven, T., Sachs, D. and Spycher, G.: 1987,Can. J. For. Res. 171 1585–1595.Google Scholar
  48. Spies, T. A., Franklin, J. F. and Thomas, T. B.: 1988,Ecology 69, 1689–1702.Google Scholar
  49. Tans, P. P., Fung, I. Y., and Takahashi, T.: 1990,Science 247, 1431–1438.Google Scholar
  50. Tretyakov, N. V., Gorskiy, P. V., and Samoilovich, G. G.: 1952,Forest Inventory Reference Book. Goslesbumizdat Publishers, Moscow-Leningrad, Russia. [In Russian]Google Scholar
  51. Tritton, L. M.: 1980, Ph.D. Dissertation, Yale Univ., New Haven, USA.Google Scholar
  52. Uhl, C. and Kauffman, J. B.: 1990,Ecology 71(2), 437–449.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • O. N. Krankina
    • 1
  • M. E. Harmon
    • 1
  1. 1.Department of Forest ScienceOregon State UniversityCorvallisUSA

Personalised recommendations