Acta Mechanica

, Volume 63, Issue 1–4, pp 161–178 | Cite as

Large debris flows: A macro-viscous phenomenon

  • T. R. H. Davies
Contributed Papers


Field observations from a variety of sources suggest that destructive debris flows occur when the density of the fluid-solid mixture exceeds about 1.5 T/m3, and that their destructive ability is due to their pulsing nature and to their ability to carry large boulders.

If debris flows are treated as a macroviscous flow of large stones in a slurry of fine solids in water, several of their obvious characteristics (boulder transport, deep bed erosion, intermittent jamming) can be explained. Further, the amplification and translation in a main channel of random surges due to jamming in tributaries explains the regular, large pulses in Chinese debris flows as a roll-wave phenomenon.


Fluid Dynamics Debris Flow Boulder Field Observation Transport Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings Royal Society of London225, 49–63 (1954).Google Scholar
  2. [2]
    Bagnold, R. A.: Some flume experiments on large grains but little denser than the transporting fluid, and their implications. Proc. Inst. Civ. Eng. pp. 174–211 (1955).Google Scholar
  3. [3]
    Bagnold, R. A.: The flow of cohesionless grains in fluids. Phil. Trans., Royal Soc. LondonA 249, 235–297 (1956).Google Scholar
  4. [4]
    Bagnold, R. A.: Deposition in the process of hydraulic transport. Sedimentology10, 45–56 (1968).Google Scholar
  5. [5]
    Bailard, J. A., Inman, D. L.: A reexamination of Bagnold's granular-fluid model and bed load transport equation. J. Geoph. Res.84, C12, 7827–7833 (1979).Google Scholar
  6. [6]
    Berlamont, J. E., Vanderstappen, N.: Unstable turbulent flow in open channels. ASCE J. Hydraul. Div.107, 427–449 (1981).Google Scholar
  7. [7]
    Binnie, A. M.: Instability in a slightly inclined water channel. J. Fluid. Mech.5, 4, 561–570 (1959).Google Scholar
  8. [8]
    Brock, R. R.: Development of roll waves in open channels. Report No. KH-R-16, p. 226. W. N. Keck Lab., Calif. Inst. Techn., Pasadena, 1967.Google Scholar
  9. [9]
    Broscoe, A. J., Thompson, S.: Observations on an alpine mudflow, Steele Creek, Yukon. Can. J. Earth Sc.6, 219–229 (1969).Google Scholar
  10. [10]
    Carter, R. M.: A discussion and classification of subaqueous mass transport with particular application to grain-flow, slurry and fluxoturbidities. Earth-Sc. Rev.11, 145–177 (1975).Google Scholar
  11. [11]
    Chu Junda: The viscosity of sediment-water mixture. Proc. Int. Symp. River Sed., Beijing, China,1, 205–211 (1980).Google Scholar
  12. [12]
    Costa, J. E.: Physical geomorphology of debris flows, in: Developments and applications of geomorphology (Eds.: Costa, J. E., Fleischer, P. J.) Springer 1984.Google Scholar
  13. [13]
    Curry, R. R.: Observation of alpine mudflows in the Tenmile Range, Central Colorado. Bull., Geol. Soc. Amer.,77, 771–776 (1966).Google Scholar
  14. [14]
    Dai Jilan, Wan Zhaohui, Wang Wenzhi, Chen Wukui, Li Xijun: An experimental study of slurry transport in pipes. Proc. Int. Symp-River Sed., Beijing, China,1, 195 to 204 (1980).Google Scholar
  15. [15]
    Davies, T. R. H.: The investigation of avalanche processes by laboratory experiments; exploratory tests. Intern. Rep., p. 31. Laboratory of Hydraulics, Hydrology and Glaciology, ETH-Zurich, 1979.Google Scholar
  16. [16]
    Davies, T. R. H.: Spreading of rock avalanches by mechanical fluidization. Rock Mech.15, 9–24 (1982).Google Scholar
  17. [17]
    Engelund, F., Wan Zhaohui: Instability of hyperconcentrated flow. ASCE, J. Hydraul. Div.110 HY3, 219–233 (1984).Google Scholar
  18. [18]
    Eisbacher, G. H.: Mountain torrents and debris flows. Episodes4, 12–17 (1982).Google Scholar
  19. [19]
    Enos, P.: Flow regimes in debris flows. Sedimentology24, 133–142 (1977).Google Scholar
  20. [20]
    Hampton, M. A.: The competence of fine-grained debris flows. J. Sed. Petrol.45, 4, 834–844 (1975).Google Scholar
  21. [21]
    Hampton, M. A.: Buoyancy in debris flows. J. Sed. Petrol.49, 3, 753–758 (1979).Google Scholar
  22. [22]
    Henderson, F. M.: Open channel flow. Macmillan 1966.Google Scholar
  23. [23]
    Holmes, W. H.: Travelling waves in steep channels. Civil Eng.6, 367–368 (1936).Google Scholar
  24. [24]
    Ikeya, H.: Introduction to Sabo works, p. 168. Japan Sabo Association 1976.Google Scholar
  25. [25]
    Ikeya, H.: A method of designation for area in danger of debris flow, in: Erosion and sediment transport in Pacific rim steepland (Davies, T. R. H., Pearce, A. J., eds.) IAHS Publ. No. 132, 576–588 (1981).Google Scholar
  26. [26]
    Ishihara, T., Iwagaki, Y., Iwasa, Y.: Discussion of “Roll waves and slug flows in inclined open channels”. ASCE, J. Hydraul. Div.86, 45–60 (1960).Google Scholar
  27. [27]
    Johnson, A. M.: Physical processes in geology, p. 577. Freeman Cooper and Co. 1970.Google Scholar
  28. [28]
    Johnson, A. M., Rahn, P. H.: Mobilization of debris flows. Zeit. Geomorph., Suppl.9, 168–186 (1970).Google Scholar
  29. [29]
    Hirano, M., Iwamoto, M.: Mechanical characteristics of debris flow. Proc. XVII IUFRO Congr. Kyoto, Japan, 1981.Google Scholar
  30. [30]
    Kang Zhicheng, Zhang Shucheng: A preliminary analysis of the characteristics of debris flow. Proc. Int. Symp. River Sed., Beijing, China,1, 213–226 (1980).Google Scholar
  31. [31]
    Kronfellner-Kraus, G.: Über den Geschiebe- und Feststofftransport in Wildbächen. Öst. Wasserw.34, 213–226 (1980).Google Scholar
  32. [32]
    Li Jan, Luo Defu: The formation and characteristics of mudflow and flood. Zeit. Geomorph.25, 4, 470–484 (1981).Google Scholar
  33. [33]
    Li Jan, Yuan Jianmo, Bi Cheng, Luo Defu: The main features of the mudflow in Jiang-Jia Ravine. Zeit. Geomorph.27, 3, 325–341 (1983).Google Scholar
  34. [34]
    Lowe, D. R.: Grain flow and grain flow deposits. J. Sed. Petrol.46, 1, 188–199 (1976).Google Scholar
  35. [35]
    Massey, B. S.: Mechanics of fluids, 5th ed., p. 625. Old Wokingham, Surrey: Van Nostrand-Reinhold U. K. Ltd. 1983.Google Scholar
  36. [36]
    Mayer, P. G.: Roll waves and slug flows in open channels. ASCE, J. Hydraul. Div.85, 99–141 (1959).Google Scholar
  37. [37]
    McSaveney, M. J.: Sherman glacier rock avalanche, in: Rockslides and avalanches, Vol. 1 (Voight, B., ed.) Dev. Geotech. Eng. 14 A, pp. 197–258. Elsevier 1978.Google Scholar
  38. [38]
    Middleton, G. V., Hampton, M. A.: Subaqueous sediment transport and deposition by sediment gravity flows, in: Marine sediment transport and environmental management (Stanley, D. J., Swift, D. J. P., eds.), pp. 197–218, 1976.Google Scholar
  39. [39]
    Niyazov, B. S., Degovets, A. S.: Estimation of the parameters of catastrophic mudflows in the basins of the lesser and greater Almatinka Rivers. Sov. Hydrol.2, 75–80 (1975).Google Scholar
  40. [40]
    Okuda, S., Suwa, H., Okunishi, K., Yokoyama, K., Nakano, M.: Observations on the motion of a debris flow and its geomorphological effects. Zeit. Geomorph., Suppl.35, 142–163 (1980).Google Scholar
  41. [41]
    Pierson, T. C.: Erosion and deposition by debris flows at Mt. Thomas, North Canterbury, New Zealand. Earth Surf. Proc.5, 227–247 (1980).Google Scholar
  42. [42]
    Pierson, T. C.: Dominant particle upport mechanisms in debris flows at Mt. Thomas, New Zealand, and implications for flow mobility. Sedimentology28, 49–60 (1981).Google Scholar
  43. [43]
    Rodine, J. D.: Analysis of the mobilization of debris flows. Ph. D. Thesis, Stanford University, 1974.Google Scholar
  44. [44]
    Rodine, J. D., Johnson, A. M.: The ability of debris, heavily freighted with coarse clastic materials, to flow on gentle slopes. Sedimentology23, 213–234 (1976).Google Scholar
  45. [45]
    Sharp, R. P., Nobles, L. H.: Mudflow of 1941 at Wrightwood, Southern California. Bull. Geol. Soc. Amer.64, 547–560 (1953).Google Scholar
  46. [46]
    Suwa, H., Okuda, S.: Dissection of valleys by debris flows. Zeit. Geomorph., Suppl.35, 164–182 (1980).Google Scholar
  47. [47]
    Takahashi, T.: Mechanical characteristics of debris flow. ASCE, J. Hydraul. Div.104, 1135–1169 (1978).Google Scholar
  48. [48]
    Takahashi, T.: Debris flow on prismatic open channel. ASCE, J. Hydraul. Div.106, 381–396 (1980).Google Scholar
  49. [49]
    Takahashi, T.: Debris flow. Ann. Rev. Fluid Mech.13, 57–77 (1981a).Google Scholar
  50. [50]
    Takahashi, T.: Estimation of potential debris flows and their hazard zones; soft countermeasures for a disaster. Natural Disaster Sc.13, 57–89 (1981b).Google Scholar
  51. [51]
    Takahashi, T., Ashida, K., Sawai, K.: Delineation of debris flow hazard areas, in: Erosion and sediment transport in Pacific rim steeplands (Davies, T. R. H., Pearce, A. J., eds.) IAHS Publ. No. 132, 589–603 (1981).Google Scholar
  52. [52]
    Woodruff, J. F.: Debris avalanches as an erosional agent in the Appalachian Mountains. J. Geol.70, 399–406 (1971).Google Scholar
  53. [53]
    Zhang, X., Liu, T., Wang, Y., Luo, J.: The main features of debris flows and control structures in Hunshui Gully, Yunnan Province, China. Proc. Int. Symp. on Erosion, Debris Flow and Disaster Prevention, Tsukuba, Japan, 1985.Google Scholar
  54. [54]
    Zeller, J.: Die Schwierigkeit einer technisch korrekten Festlegung der Wildbachgefahrenzonen. Sonderdruck, 100 Jahre Fachveranstaltungen, Wien, pp. 169–187 1972.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • T. R. H. Davies
    • 1
  1. 1.Department of Agricultural Engineering, Lincoln CollegeUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations