Acta Mechanica

, Volume 63, Issue 1–4, pp 161–178

Large debris flows: A macro-viscous phenomenon

  • T. R. H. Davies
Contributed Papers


Field observations from a variety of sources suggest that destructive debris flows occur when the density of the fluid-solid mixture exceeds about 1.5 T/m3, and that their destructive ability is due to their pulsing nature and to their ability to carry large boulders.

If debris flows are treated as a macroviscous flow of large stones in a slurry of fine solids in water, several of their obvious characteristics (boulder transport, deep bed erosion, intermittent jamming) can be explained. Further, the amplification and translation in a main channel of random surges due to jamming in tributaries explains the regular, large pulses in Chinese debris flows as a roll-wave phenomenon.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings Royal Society of London225, 49–63 (1954).Google Scholar
  2. [2]
    Bagnold, R. A.: Some flume experiments on large grains but little denser than the transporting fluid, and their implications. Proc. Inst. Civ. Eng. pp. 174–211 (1955).Google Scholar
  3. [3]
    Bagnold, R. A.: The flow of cohesionless grains in fluids. Phil. Trans., Royal Soc. LondonA 249, 235–297 (1956).Google Scholar
  4. [4]
    Bagnold, R. A.: Deposition in the process of hydraulic transport. Sedimentology10, 45–56 (1968).Google Scholar
  5. [5]
    Bailard, J. A., Inman, D. L.: A reexamination of Bagnold's granular-fluid model and bed load transport equation. J. Geoph. Res.84, C12, 7827–7833 (1979).Google Scholar
  6. [6]
    Berlamont, J. E., Vanderstappen, N.: Unstable turbulent flow in open channels. ASCE J. Hydraul. Div.107, 427–449 (1981).Google Scholar
  7. [7]
    Binnie, A. M.: Instability in a slightly inclined water channel. J. Fluid. Mech.5, 4, 561–570 (1959).Google Scholar
  8. [8]
    Brock, R. R.: Development of roll waves in open channels. Report No. KH-R-16, p. 226. W. N. Keck Lab., Calif. Inst. Techn., Pasadena, 1967.Google Scholar
  9. [9]
    Broscoe, A. J., Thompson, S.: Observations on an alpine mudflow, Steele Creek, Yukon. Can. J. Earth Sc.6, 219–229 (1969).Google Scholar
  10. [10]
    Carter, R. M.: A discussion and classification of subaqueous mass transport with particular application to grain-flow, slurry and fluxoturbidities. Earth-Sc. Rev.11, 145–177 (1975).Google Scholar
  11. [11]
    Chu Junda: The viscosity of sediment-water mixture. Proc. Int. Symp. River Sed., Beijing, China,1, 205–211 (1980).Google Scholar
  12. [12]
    Costa, J. E.: Physical geomorphology of debris flows, in: Developments and applications of geomorphology (Eds.: Costa, J. E., Fleischer, P. J.) Springer 1984.Google Scholar
  13. [13]
    Curry, R. R.: Observation of alpine mudflows in the Tenmile Range, Central Colorado. Bull., Geol. Soc. Amer.,77, 771–776 (1966).Google Scholar
  14. [14]
    Dai Jilan, Wan Zhaohui, Wang Wenzhi, Chen Wukui, Li Xijun: An experimental study of slurry transport in pipes. Proc. Int. Symp-River Sed., Beijing, China,1, 195 to 204 (1980).Google Scholar
  15. [15]
    Davies, T. R. H.: The investigation of avalanche processes by laboratory experiments; exploratory tests. Intern. Rep., p. 31. Laboratory of Hydraulics, Hydrology and Glaciology, ETH-Zurich, 1979.Google Scholar
  16. [16]
    Davies, T. R. H.: Spreading of rock avalanches by mechanical fluidization. Rock Mech.15, 9–24 (1982).Google Scholar
  17. [17]
    Engelund, F., Wan Zhaohui: Instability of hyperconcentrated flow. ASCE, J. Hydraul. Div.110 HY3, 219–233 (1984).Google Scholar
  18. [18]
    Eisbacher, G. H.: Mountain torrents and debris flows. Episodes4, 12–17 (1982).Google Scholar
  19. [19]
    Enos, P.: Flow regimes in debris flows. Sedimentology24, 133–142 (1977).Google Scholar
  20. [20]
    Hampton, M. A.: The competence of fine-grained debris flows. J. Sed. Petrol.45, 4, 834–844 (1975).Google Scholar
  21. [21]
    Hampton, M. A.: Buoyancy in debris flows. J. Sed. Petrol.49, 3, 753–758 (1979).Google Scholar
  22. [22]
    Henderson, F. M.: Open channel flow. Macmillan 1966.Google Scholar
  23. [23]
    Holmes, W. H.: Travelling waves in steep channels. Civil Eng.6, 367–368 (1936).Google Scholar
  24. [24]
    Ikeya, H.: Introduction to Sabo works, p. 168. Japan Sabo Association 1976.Google Scholar
  25. [25]
    Ikeya, H.: A method of designation for area in danger of debris flow, in: Erosion and sediment transport in Pacific rim steepland (Davies, T. R. H., Pearce, A. J., eds.) IAHS Publ. No. 132, 576–588 (1981).Google Scholar
  26. [26]
    Ishihara, T., Iwagaki, Y., Iwasa, Y.: Discussion of “Roll waves and slug flows in inclined open channels”. ASCE, J. Hydraul. Div.86, 45–60 (1960).Google Scholar
  27. [27]
    Johnson, A. M.: Physical processes in geology, p. 577. Freeman Cooper and Co. 1970.Google Scholar
  28. [28]
    Johnson, A. M., Rahn, P. H.: Mobilization of debris flows. Zeit. Geomorph., Suppl.9, 168–186 (1970).Google Scholar
  29. [29]
    Hirano, M., Iwamoto, M.: Mechanical characteristics of debris flow. Proc. XVII IUFRO Congr. Kyoto, Japan, 1981.Google Scholar
  30. [30]
    Kang Zhicheng, Zhang Shucheng: A preliminary analysis of the characteristics of debris flow. Proc. Int. Symp. River Sed., Beijing, China,1, 213–226 (1980).Google Scholar
  31. [31]
    Kronfellner-Kraus, G.: Über den Geschiebe- und Feststofftransport in Wildbächen. Öst. Wasserw.34, 213–226 (1980).Google Scholar
  32. [32]
    Li Jan, Luo Defu: The formation and characteristics of mudflow and flood. Zeit. Geomorph.25, 4, 470–484 (1981).Google Scholar
  33. [33]
    Li Jan, Yuan Jianmo, Bi Cheng, Luo Defu: The main features of the mudflow in Jiang-Jia Ravine. Zeit. Geomorph.27, 3, 325–341 (1983).Google Scholar
  34. [34]
    Lowe, D. R.: Grain flow and grain flow deposits. J. Sed. Petrol.46, 1, 188–199 (1976).Google Scholar
  35. [35]
    Massey, B. S.: Mechanics of fluids, 5th ed., p. 625. Old Wokingham, Surrey: Van Nostrand-Reinhold U. K. Ltd. 1983.Google Scholar
  36. [36]
    Mayer, P. G.: Roll waves and slug flows in open channels. ASCE, J. Hydraul. Div.85, 99–141 (1959).Google Scholar
  37. [37]
    McSaveney, M. J.: Sherman glacier rock avalanche, in: Rockslides and avalanches, Vol. 1 (Voight, B., ed.) Dev. Geotech. Eng. 14 A, pp. 197–258. Elsevier 1978.Google Scholar
  38. [38]
    Middleton, G. V., Hampton, M. A.: Subaqueous sediment transport and deposition by sediment gravity flows, in: Marine sediment transport and environmental management (Stanley, D. J., Swift, D. J. P., eds.), pp. 197–218, 1976.Google Scholar
  39. [39]
    Niyazov, B. S., Degovets, A. S.: Estimation of the parameters of catastrophic mudflows in the basins of the lesser and greater Almatinka Rivers. Sov. Hydrol.2, 75–80 (1975).Google Scholar
  40. [40]
    Okuda, S., Suwa, H., Okunishi, K., Yokoyama, K., Nakano, M.: Observations on the motion of a debris flow and its geomorphological effects. Zeit. Geomorph., Suppl.35, 142–163 (1980).Google Scholar
  41. [41]
    Pierson, T. C.: Erosion and deposition by debris flows at Mt. Thomas, North Canterbury, New Zealand. Earth Surf. Proc.5, 227–247 (1980).Google Scholar
  42. [42]
    Pierson, T. C.: Dominant particle upport mechanisms in debris flows at Mt. Thomas, New Zealand, and implications for flow mobility. Sedimentology28, 49–60 (1981).Google Scholar
  43. [43]
    Rodine, J. D.: Analysis of the mobilization of debris flows. Ph. D. Thesis, Stanford University, 1974.Google Scholar
  44. [44]
    Rodine, J. D., Johnson, A. M.: The ability of debris, heavily freighted with coarse clastic materials, to flow on gentle slopes. Sedimentology23, 213–234 (1976).Google Scholar
  45. [45]
    Sharp, R. P., Nobles, L. H.: Mudflow of 1941 at Wrightwood, Southern California. Bull. Geol. Soc. Amer.64, 547–560 (1953).Google Scholar
  46. [46]
    Suwa, H., Okuda, S.: Dissection of valleys by debris flows. Zeit. Geomorph., Suppl.35, 164–182 (1980).Google Scholar
  47. [47]
    Takahashi, T.: Mechanical characteristics of debris flow. ASCE, J. Hydraul. Div.104, 1135–1169 (1978).Google Scholar
  48. [48]
    Takahashi, T.: Debris flow on prismatic open channel. ASCE, J. Hydraul. Div.106, 381–396 (1980).Google Scholar
  49. [49]
    Takahashi, T.: Debris flow. Ann. Rev. Fluid Mech.13, 57–77 (1981a).Google Scholar
  50. [50]
    Takahashi, T.: Estimation of potential debris flows and their hazard zones; soft countermeasures for a disaster. Natural Disaster Sc.13, 57–89 (1981b).Google Scholar
  51. [51]
    Takahashi, T., Ashida, K., Sawai, K.: Delineation of debris flow hazard areas, in: Erosion and sediment transport in Pacific rim steeplands (Davies, T. R. H., Pearce, A. J., eds.) IAHS Publ. No. 132, 589–603 (1981).Google Scholar
  52. [52]
    Woodruff, J. F.: Debris avalanches as an erosional agent in the Appalachian Mountains. J. Geol.70, 399–406 (1971).Google Scholar
  53. [53]
    Zhang, X., Liu, T., Wang, Y., Luo, J.: The main features of debris flows and control structures in Hunshui Gully, Yunnan Province, China. Proc. Int. Symp. on Erosion, Debris Flow and Disaster Prevention, Tsukuba, Japan, 1985.Google Scholar
  54. [54]
    Zeller, J.: Die Schwierigkeit einer technisch korrekten Festlegung der Wildbachgefahrenzonen. Sonderdruck, 100 Jahre Fachveranstaltungen, Wien, pp. 169–187 1972.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • T. R. H. Davies
    • 1
  1. 1.Department of Agricultural Engineering, Lincoln CollegeUniversity of CanterburyChristchurchNew Zealand
  2. 2.E.A.f.V.BirmensdorfSwitzerland

Personalised recommendations