Journal of Neurocytology

, Volume 22, Issue 2, pp 102–117

Fibroblasts are required for Schwann cell basal lamina deposition and ensheathment of unmyelinated sympathetic neurites in culture

  • V. J. Obremski
  • M. I. Johnson
  • M. B. Bunge
Article

Summary

The ability to purify and recombine populations of peripheral neurons, Schwann cells and fibroblasts in tissue culture has enabled us to examine the contribution of fibroblasts to Schwann cell basal lamina assembly and ensheathment of unmyelinated rat superior cervical ganglion neuritesin vitro. Purified perinatal superior cervical ganglion neurons were grown in culture either with Schwann cells or with Schwann cells plus fibroblasts derived from either superior cervical ganglion capsule or cranial periosteum. The cultures were maintained for 2–8 weeks on a collagen substratum in a medium known to promote Schwann cell differentiation (myelin, basal lamina formation) in the presence of dorsal root ganglion neurons. The extent of Schwann cell differentiation (ensheathment, basal lamina formation) in the presence of superior cervical ganglion neurons was evaluated in this study using electron microscopy. In superior cervical ganglion neuron plus Schwann cell cultures (without fibroblasts), Schwann cells achieved only a moderate degree of ensheathment; also, Schwann cell basal lamina was discontinuous and extracellular collagen fibrils were sparse. Although only discontinuous basal lamina was demonstrable by electron microscopy in these cultures, surprisingly, Schwann cell/neurite fascicles were uniformly immunostained for laminin, type IV collagen, and heparan sulfate proteoglycan. The addition of fibroblasts to superior cervical ganglion neuron plus Schwann cell cultures increased the deposition of basal lamina around the Schwann cell/neurite units, the number of collagen fibrils, and the extent of neurite ensheathment. We propose that the presence of basal lamina increases the Schwann cell's ability to ensheathe superior cervical ganglion neurites, possibly through an augmentation of specific extracellular matrix components or by increasing in some way the capacity of these components to become organized into basal lamina. We conclude that, unlike dorsal root ganglion neurons, superior cervical ganglion neurons are unable to stimulate full Schwann cell extracellular matrix expression with the result that these Schwann cells require the extraneuronal influence of fibroblasts to deposit basal lamina and attain their mature phenotype in culture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguayo, A., Epps, J., Charron, L. &Bray, G. M. (1976) Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography.Brain Research 104, 1–20.PubMedGoogle Scholar
  2. Baron-Van Evercooren, A., Gansmüller, A., Gumpel, M., Baumann, N. &Kleinman, H. K. (1986) Schwann cell differentiationin vitro: extracellular matrix deposition and interaction.Developmental Neuroscience 8, 182–96.PubMedGoogle Scholar
  3. Bohnert, A., Hornung, J., Mackenzie, I. C. &Fusenig, N. E. (1986) Epithelial-mesenchymal interactions control basement membrane production and differentiation in cultured and transplanted mouse keratinocytes.Cell and Tissue Research 244, 413–29.PubMedGoogle Scholar
  4. Bottenstein, J. E. &Sato, G. H. (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented media.Proceedings of the National Academy of Sciences (USA) 76, 514–16.Google Scholar
  5. Bunge, M. B. &Wood, P. M. (1989) Basal lamina deposition on Schwann cells cultured with fibroblasts in the absence of neurons.Society for Neuroscience Abstracts 15, 689a.Google Scholar
  6. Bunge, M. B., Williams, A. K., Wood, P. M., Uitto, J. &Jeffery, J. J. (1980) Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen formation.Journal of Cell Biology 84, 184–202.PubMedGoogle Scholar
  7. Bunge, M. B., Bunge, R. P., Carey, D. J., Cornbrooks, C. J., Eldridge, C. F., Williams, A. K. &Wood, P. M. (1983) Axonal and nonaxonal influences on Schwann cell development. InDeveloping and regenerating vertebrate nervous systems (edited byCoates, P. W., Markwald, R. R. &Kenny, A. D.) pp. 71–105. New York: A. R. Liss.Google Scholar
  8. Bunge, M. B., Wood, P. M., Tynan, L. B., Bates, M. L. &Sanes, J. R. (1989) Perineurium originates from fibroblasts: demonstrationin vitro with a retroviral marker.Science 243, 229–31.PubMedGoogle Scholar
  9. Bunge, R. P. &Bunge, M. B. (1978) Evidence that contact with connective tissue matrix is required for normal interaction between Schwann cells and nerve fibers.Journal of Cell Biology 78, 943–50.PubMedGoogle Scholar
  10. Bunge, R. P., Bunge, M. B. &Eldridge, C. F. (1986) Linkage between axonal ensheathment and basal lamina production by Schwann cells.Annual Review of Nemoscience 9, 305–28.Google Scholar
  11. Bunge, R. P., Bunge, M. B., Carey, D. J., Cornbrooks, C., Higgins, D., Johnson, M. I., Kleinschimdt, D. C., Wood, P. M., Iacovitti, L. &Moya, F. (1982a) Functional expression in primary nerve tissue cultures maintained in defined medium.Cold Spring Harbor Conferences on Cell Proliferation 9, 1017–31.Google Scholar
  12. Bunge, R. P., Bunge, M. B., Williams, A. K. &Wartels, L. (1982b) Does the dystrophic mouse nerve lesion result from an extracellular matrix abnormality? InDisorders of the Motor Unit (edited bySchotland, D. L.) pp. 23–35. New York: John Wiley & Sons.Google Scholar
  13. Carey, D. J., Eldridge, C. F., Cornbrooks, C. J., Timpl, R. &Bunge, R. P. (1983) Biosynthesis of type IV collagen by cultured rat Schwann cells.Journal of Cell Biology 97, 473–9.PubMedGoogle Scholar
  14. Carey, D. J., Todd, M. S. &Rafferty, C. M. (1986) Schwann cell myelination: induction by exogenous basement membrane-like extracellular matrix.Journal of Cell Biology 102, 2254–63.PubMedGoogle Scholar
  15. Clark, M. B. &Bunge, M. B. (1989) Cultured Schwann cells assemble normal-appearing basal lamina only when they ensheathe axons.Developmental Biology 133, 394–404.Google Scholar
  16. Cornbrooks, C. J., Mithen, F., Cochran, J. M. &Bunge, R. P. (1983) Factors affecting Schwann cell basal lamina formation in cultures of dorsal root ganglia from mice with muscular dystrophy.Developmental Brain Research 6, 57–67.Google Scholar
  17. Delvoye, P., Piérard, D., Noël, A., Nusgens, B., Foidart, J. M. &Lapière, C. M. (1988) Fibroblasts induce the assembly of the macromolecules of the basement membrane.Journal of Investigative Dermatology 90, 276–82.PubMedGoogle Scholar
  18. Diner, O. (1965) Les cellules de Schwann en mitose et leurs rapports avec les axons au cours du developpement du nerf sciatique chez le rat.Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 261, 1731–4.Google Scholar
  19. Eldridge, C. F., Sanes, J. R., Chiu, A. Y., Bunge, R. P. &Cornbrooks, C. J. (1986) Basal lamina associated heparan sulfate proteoglycan in the rat PNS: characterization and localization using monoclonal antibodies.Journal of Neurocytology 15, 37–51.PubMedGoogle Scholar
  20. Eldridge, C. F., Bunge, M. B., Bunge, R. P. &Wood, P. M. (1987) Differentiation of axon- related Schwann cellsin vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation.Journal of Cell Biology 105, 1023–34.PubMedGoogle Scholar
  21. Eldridge, C. F., Bunge, M. B. &Bunge, R. P. (1989) Differentiation of axon-related Schwann cellsin vitro. II. Control of myelin formation by basal lamina.Journal of Neuroscience 9, 625–38.PubMedGoogle Scholar
  22. Farquhar, M. G. (1991) The glomerular basement membrane: a selective macromolecular filter. InCell Biology of Extracellular Matrix, 2nd ed. (edited byHay, E. D.) pp. 365–418. New York: Plenum Press.Google Scholar
  23. Kleitman, N., Wood, P. M. &Bunge, R. P. (1990) Tissue culture methods for the study of myelination. InNeuronal Cell Culture (edited byBanker, G. A. &Goslin, K.) pp. 337–77. Boston, MA: MIT Press.Google Scholar
  24. Kobayashi, S. &Suzuki, K. (1990) Development of unmyelinated fibers in peripheral nerve- an immunohistochemical and electronmicroscopic study.Brain and Development 12, 237–46.PubMedGoogle Scholar
  25. Kühl, U., Öcalan, M., Timpl, R., Mayne, R., Hay, E. &Von Der Mark, K. (1984) Role of muscle fibroblasts in the deposition of type IV collagen in the basal lamina of myotubes.Differentiation 28, 164–72.PubMedGoogle Scholar
  26. Mirsky, R. &Jessen, K. R. (1986) The biology of nonmyelin-forming Schwann cells.Annals of the New York Academy of Sciences 486, 132–46.PubMedGoogle Scholar
  27. Moya, F., Bunge, R. P. &Bunge, M. B. (1980) Schwann cells proliferate but fail to differentiate in defined medium.Proceedings of the National Academy of Sciences (USA) 77, 6902–6.Google Scholar
  28. Obremski, V. J. &Bunge, M. B. (1989) Diffusible substances from fibroblasts cause assembly of basal lamina on Schwann cells.Journal of Cell Biology 109, 238a.Google Scholar
  29. Obremski, V. J., Johnson, M. I. &Bunge, M. B. (1988) Schwann cell basal lamina formation and ensheathment of unmyelinated neurites are increased in cultures containing fibroblasts.Society for Neuroscience Abstracts 14, 426a.Google Scholar
  30. Okada, E., Bunge, R. P. &Bunge, M. B. (1980) Abnormalities expressed in long term cultures of dorsal root ganglia from the dystrophic mouse.Brain Research 194, 455–70.PubMedGoogle Scholar
  31. Peterson, A. C. (1985) Peripheral nerves in shiverer- dystrophic mouse chimera: evidence that a non-Schwann cell component is required for axon ensheathmentin vivo.Journal of Neuroscience 5, 1740–54.PubMedGoogle Scholar
  32. Ratner, N., Elbein, A., Bunge, M. B., Porter, S., Bunge, R. P. &Glaser, L. (1986) Specific asparagine-linked oligosaccharides are not required for certain neuron- neuron and neuron-Schwann cell interactions.Journal of Cell Biology 103, 159–70.Google Scholar
  33. Roufa, D., Johnson, M. I. &Bunge, M. B. (1983) Influence of ganglion age, nonneuronal cells and substratum on neurite outgrowth in culture.Developmental Biology 99, 225–39.PubMedGoogle Scholar
  34. Roufa, D., Bunge, M. B., Johnson, M. I. &Cornbrooks, C. J. (1986) Variation in content and function of non- neuronal cells in the outgrowth of sympathetic ganglia from embryos of differing age.Journal of Neuroscience 6, 790–802.PubMedGoogle Scholar
  35. Sanderson, R. D., Fitch, J. M., Lisenmayer, T. R. &Mayne, R. (1986) Fibroblasts promote the formation of a continuous basal lamina during myogenesisin vitro.Journal of Cell Biology 102, 740–7.PubMedGoogle Scholar
  36. Sobue, M., Takeuchi, J., Tsukidate, K., Toida, M., Akao, S., Fukatso, T., Nagasaka, T. &Nakashima, N. (1986) Accumulation of basement components in interface between gastric carcinoma cells and fibroblastsin vitro.British Journal of Cancer 54, 699–704.PubMedGoogle Scholar
  37. Webster, H. Def., Martin, J. R. &O'Connell, M. F. (1973) The relationships between interphase Schwann cells and axons before myelination: a quantitative electron microscopic study.Developmental Biology 32, 401–16.PubMedGoogle Scholar
  38. Weinberg, H. J. &Spencer, P. S. (1975) Studies on the control of myelinogenesis. I. Myelination of regenerating axons after entry into a foreign unmyelinated nerve.Journal of Neurocytology 4, 395–418.Google Scholar
  39. Williams, A. K., Bunge, M. B., Wood, P. M. &Argiro, V. (1983) Difference in collagen fibrils formed by fibroblasts (Fbs) from different sources with and without neurons (NCs) and Schwann cells (SCs).Journal of Cell Biology 97, 89a.Google Scholar
  40. Wood, P. M. (1976) Separation of functional Schwann cells and neurons from normal peripheral nerve tissue.Brain Research 115, 361–75.PubMedGoogle Scholar
  41. Yen, S. &Fields, K. L. (1981) Antibodies to neurofilament, glial filament and fibroblast intermediate proteins bind to different cell types of the nervous system.Journal of Cell Biology 88, 115–26.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1993

Authors and Affiliations

  • V. J. Obremski
    • 1
    • 2
  • M. I. Johnson
    • 1
    • 3
  • M. B. Bunge
    • 1
    • 2
  1. 1.Department of Anatomy and NeurobiologyWashington University School of MedicineSt. LouisUSA
  2. 2.The Miami Project to Cure Paralysis, The Chambers Family Electron Microscopy LaboratoryUniversity of Miami School of MedicineR-48, MiamiUSA
  3. 3.Department of Pediatrics, Section of Pediatric Neurology, Children's Research CenterUniversity of ArizonaTucsonUSA

Personalised recommendations