Journal of Neurocytology

, Volume 22, Issue 9, pp 735–742 | Cite as

Thirty years of synaptosome research

  • V. P. Whittaker


Detached synapses (synaptosomes), first isolated by the author in 1958 and identified as such in 1960, are sealed presynaptic nerve terminals often with a portion of the target cell — sometimes amounting to a complete dendritic spine — adhering to their external surface. They can be prepared in high yield from brain tissue and also in decreasing yield from spinal cord, retina, sympathetic ganglia, myenteric plexus and electric organs. They are sealed structures which, under metabolizing conditions, respire, take up oxygen and glucose, extrude Na+, accumulate K+, maintain a normal membrane potential and, on depolarization, release transmitter in a Ca2+-dependent manner. They thus provide an excellent preparation with which to investigate synaptic function without the complications encountered with synapsesin situ. They also serve as the parent fraction for preparations of synaptic vesicles and other synaptic components.


Spinal Cord Retina Membrane Potential External Surface Dependent Manner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-latif, A. A. (1966) A simple method for isolation of nerve ending particles from rat brain.Biochemica et Biophysica Acta 121, 403–6.Google Scholar
  2. Agoston, D. V., Borroni, E. &Richardson, P. J. (1988) Cholinergic surface antigen Chol-1 is present in a subclass of VIP-containing rat cortical synaptosomes.Journal of Neurochemistry 50, 1659–62.PubMedGoogle Scholar
  3. Archibald, J. T. &White, T. D. (1974) Rapid reversal of internal Na+ and K+ contents of synaptosomes by ouabain.Nature 252, 595–6.PubMedGoogle Scholar
  4. Atterwill, C. K. &Neal, M. J. (1976) The subcellular distribution of [14C]GABA and [3H]dopamine in the retina.Journal of Neurochemistry 27, 529–37.PubMedGoogle Scholar
  5. Autilio, L. A., Appel, S. R., Pettis, P. &Gambetti, P. L. (1968) Biochemical studies of synapsesin vitro. I. Protein synthesis.Biochemistry 7, 2615–22.PubMedGoogle Scholar
  6. Baldessian, J. P. &Vogt, M. (1971) Uptake and release of norepinephrine by rat brain tissue fractions prepared by ultrafiltration.Journal of Neurochemistry 18, 951–62.PubMedGoogle Scholar
  7. Baliba, T., Atlan, H., Fromer, I., Schwalb, H., Uretzky, G. &Lichtstein, D. (1990) Volume regulation of nerve terminals.Journal of Neurochemistry 55, 2058–62.PubMedGoogle Scholar
  8. Bindler, F., La Bella, F. S. &Sanwal, M. (1967) Isolated nerve endings (neurosecretosomes) from the posterior pituitary. Partial separation of vasopressin and oxytocin and the isolation of microvesicles.Journal of Cell Biology 34, 185–205.PubMedGoogle Scholar
  9. Blaschko, H., Hagen, P. &Welch, A. D. (1955) Observations on the intracellular granules of the adrenal medulla.Journal of Physiology 129, 27–49.Google Scholar
  10. Blaustein, M. P. &Goldring, J. M. (1975) Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials.Journal of Physiology 247, 589–615.PubMedGoogle Scholar
  11. Booth, R. F. G. &Clark, J. B. (1978) A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain.Biochemical Journal 176, 365–70.PubMedGoogle Scholar
  12. Bretz, V., Bagiolini, M., Hauser, R. &Hodel, C. (1974) Resolution of three distinct populations of nerve endings from rat brain homogenates by zonal isopycnic centrifugation.Journal of Cell Biology 61, 466–80.PubMedGoogle Scholar
  13. Campbell, C. W. B. (1976) The Na+, K+, Cl contents and derived membrane potentials of presynaptic nerve endingsin vitro.Brain Research 101, 594–9.PubMedGoogle Scholar
  14. Clementi, F., Whittaker, V. P. &Sheridan, M. N. (1966) The yield of synaptosomes from the cerebral cortex of guinea pigs estimated by a polystyrene bead “tagging” procedure.Zeitschrift für Zellforschung 72, 126–38.Google Scholar
  15. Cleugh, J., Gaddum, J. H., Mitchell, A. A., Smith, W. M. &Whittaker, V. P. (1964) Substance P in brain extracts.Journal of Physiology 170, 69–85.PubMedGoogle Scholar
  16. Cotman, C. W. &Matthews, D. A. (1971) Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization.Biochemica et Biophysica Acta 249, 380–94.Google Scholar
  17. DeBelleroche, J. C. &Bradford, H. F. (1972) Metabolism of beds of mammalian cortical synaptosomes: response to depolarizing influences.Journal of Neurochemistry 19, 585–602.PubMedGoogle Scholar
  18. De Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R. &Appelmans, F. (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue.Biochemical Journal 60, 604–17.PubMedGoogle Scholar
  19. Docherty, M., Bradford, H. F., Cash, C. D., Ehret, M., Maitre, M. &Joh, T. H. (1991) Isolation of monoaminergic synaptosomes from rat brain by immunomagnetophoresis.Journal of Neurochemistry 56, 1569–80.PubMedGoogle Scholar
  20. Dowdall, M. J. &Whittaker, V. P. (1973) Comparative studies in synaptosome formation: the preparation of synaptosomes from the head ganglion of the squid,Loligo pealii.Journal of Neurochemistry 20, 921–35.PubMedGoogle Scholar
  21. Dowdall, M. J. &Zimmermann, H. (1977) The isolation of pure cholinergic nerve terminal sacs (T-sacs) from the electric organ of juvenileTorpedo.Neuroscience 2, 405–21.PubMedGoogle Scholar
  22. Enriquez, J. A., Sanchez-Prieto, J., Muino-Blanco, M. T., Hernandez-Yago, J. &Lopez-Perez, M. J. (1990) Rat brain synaptosomes prepared by phase partition.Journal of Neurochemistry 55, 1841–9.PubMedGoogle Scholar
  23. Fried, R. C. &Blaustein, M. P. (1978) Retrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes).Journal of Cell Biology 78, 685–700.PubMedGoogle Scholar
  24. Giacobini, E., Hökfelt, T., Kerpel-Fronius, S., Koslow, S. H., Mitchard, M. &Noré, B. (1971) A micro-scale procedure for the preparation of subcellular fractions from individual autonomic gangia.Journal of Neurochemistry 18, 223–31.PubMedGoogle Scholar
  25. Girod, R., Eder-Colli, L., Medilanski, J., Dunant, Y., Tabti, N. &Poo, M. -M. (1992) Pulsatile release of acetylcholine by nerve terminals (synaptosomes) isolated fromTorpedo electric organ.Journal of Physiology 450, 325–40.PubMedGoogle Scholar
  26. Gordon-Weeks, P. R., Burgoyne, R. D. &Gray, E. G. (1982) Presynaptic microtubules: organisation and assembly/disassemblyNeuroscience 7, 739–49.PubMedGoogle Scholar
  27. Gray, E. G. &Whittaker, V. P. (1960) The isolation of synaptic vesicles from the central nervous system.Journal of Physiology 153, 35–7.PubMedGoogle Scholar
  28. Gray, E. G. &Whittaker, V. P. (1962) The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation.Journal of Anatomy 96, 79–88.PubMedGoogle Scholar
  29. Hajós, F., Csillag, A. &Kálmán, M. (1979) The morphology of microtubules in incubated synaptosomes. Effect of low temperature and vinblastine.Experimental Brain Research 35, 387–93.Google Scholar
  30. Hannig, K. (1967)Electrophoresis (edited byBier, M.) pp. 423–71 New York: Academic Press.Google Scholar
  31. Hargittai, P., Ágoston, D. &Nagy, Á. (1982) Comparative biochemical and biophysical studies on rat brain synaptosomes.FEBS Letters 137, 67–70.PubMedGoogle Scholar
  32. Hebb, C. O. &Smallman, B. N. (1956) Intracellular distribution of choline acetylase.Journal of Physiology 134, 385–92.PubMedGoogle Scholar
  33. Hebb, C. O. &Whittaker, V. P. (1958) Intracellular distributions of acetylcholine and choline acetylase.Journal of Physiology 142, 187–96.PubMedGoogle Scholar
  34. Hillarp, N. Å., Högberg, B. &Nilson, B. (1955) Adenosine triphosphate in the adrenal medulla of the cow.Nature 176, 1032–3.PubMedGoogle Scholar
  35. Hirabayashi, Y., Nakao, T., Irie, F., Whittaker, V. P., Kon, K. &Ando, S. (1992) Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain.Journal of Biological Chemistry 267, 12973–8.PubMedGoogle Scholar
  36. Horne, R. W. &Whittaker, V. P. (1962) The use of the negative staining method for the electron microscopic study of subcellular particles from animal tissues.Zeitschrift für Zellforschung 58, 1–16.Google Scholar
  37. Israël, M. &Whittaker, V. P. (1965) The isolation of mossy fibre endings from the granular layer of the cerebellar cortex.Experientia 21, 325.PubMedGoogle Scholar
  38. Jahn, R. &De Camilli, P. (1991) Membrane proteins of synaptic vesicles: markers for neurons and endocrine cells; tools for the study of neurosecretion. InMarkers for Neural and Endocrine Cells, Molecular and Cell Biology, Diagnostic Applications (edited byGratzl, M. &Langley, K.) pp. 25–92. VCH Verlag, Weinheim.Google Scholar
  39. Jonakait, G. M., Gintzler, A. R. &Gershon, M. D. (1979) Isolation of axonal varicosities (autonomic synaptosomes) from the enteric nervous system.Journal of Neurochemistry 32, 1387–400.PubMedGoogle Scholar
  40. Joó, F. &Karnushina, I. (1975) Morphometric assessment of the composition of the synaptosomal fractions obtained by the use of Ficoll gradients.Journal of Neurochemistry 24, 839–40.PubMedGoogle Scholar
  41. Kornguth, S. E., Anderson, J. W. &Scott, G. (1969) Isolation of synaptic complexes in a caesium chloride density gradient: electron microscopic and immunohisto chemical studies.Journal of Neurochemistry 16, 1017–24.PubMedGoogle Scholar
  42. Lagercrantz, H. &Pertoft, H. (1972) Separation of catecholamine storing synaptosomes in colloidal silica density gradients.Journal of Neurochemistry 19, 811–23.PubMedGoogle Scholar
  43. Maycox, P. R., Hell, J. W. &Jahn, R. (1990) Amino acid neurotransmission: spotlight on synaptic vesicles.Trends in Neurosciences 13, 83–7.PubMedGoogle Scholar
  44. Mcmahon, H. T. &Nicholls, D. G. (1991) The bioenergetics of neurotransmitter release.Biochimica et Biophysica Acta 1059, 243–64.PubMedGoogle Scholar
  45. Meunier, F. -M. (1984) Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes fromTorpedo electric organ.Journal of Physiology 354, 121–37.PubMedGoogle Scholar
  46. Michaelson, D. M. &Sokolovsky, M. (1978) Induced acetylcholine release from active purely cholinergicTorpedo synaptosomes.Journal of Neurochemistry 30, 217–30.PubMedGoogle Scholar
  47. Morel, N., Israël, M., Manaranche, R. &Mastour-Frachon, P. (1977) Isolation of pure cholinergic nerve endings fromTorpedo electric organ. Evaluation of their metabolic properties.Journal of Cell Biology 75, 43–55.PubMedGoogle Scholar
  48. Nachsen, D. A. (1991) The regulation of cytosolic calcium in presynaptic nerve endings. InPresynaptic Regulation of Neurotransmitter Release: a Handbook, Vol. 1 (edited byFeigenbaum, J. &Hanani, M.) pp. 121–51. Tel Aviv: Freund Publishing House.Google Scholar
  49. Nagy, A. &Delgado-Escueta, A. V. (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll).Journal of Neurochemistry 43, 1114–23.PubMedGoogle Scholar
  50. Nicholls, D. G. (1978) Calcium transport and proton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart.Biochemical Journal 170, 511–22.PubMedGoogle Scholar
  51. Nicholls, D. G. (1989) Release of glutamate, aspartate, and γ-aminobutyric acid from isolated nerve terminals.Journal of Neurochemistry 52, 331–41.PubMedGoogle Scholar
  52. Osborne, R. H., Bradford, H. F. &Jones, D. G. (1973) Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla.Journal of Neurochemistry 21, 407–19.PubMedGoogle Scholar
  53. Richardson, P. J. (1986) Choline uptake and metabolism in affinity-purified cholinergic nerve terminals from rat brain.Journal of Neurochemistry 46, 1251–5.PubMedGoogle Scholar
  54. Ross, L. L., Andreoli, V. M. &Marchbanks, R. M. (1971) A morphological and biochemical study of subcellular fractions of the guinea pig spinal cord.Brain Research 25, 103–19.PubMedGoogle Scholar
  55. Ryan, K. J., Kalant, H. &Thomas, E. L. (1971) Free-flow electrophoretic separation and electrical surface properties of subcellular particles from guinea pig brain.Journal of Cell Biology 49, 235–46.Google Scholar
  56. Santiapillai, N. F., Gray, S. R., Phillips, R. E. &Richardson, P. J. (1989) Isolation of nerve terminals from crustacean muscle.Journal of Neurochemistry 53, 1527–35.PubMedGoogle Scholar
  57. Schwartz, R. D. P., Skolnick, E. B., Hollingsworth, E. B. &Paul, S. M. (1984) Barbiturate- and picrotoxin-sensitive chloride efflux in rat cerebral cortical synaptoneurosomes.FEBS Letters 175, 193–6.PubMedGoogle Scholar
  58. Scott., I. D. &Nicholls, D. G. (1980) Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determinedin situ.Biochemical Journal 186, 21–33.PubMedGoogle Scholar
  59. Simpson, J. A. &Weiner, E. S. C. (editors) (1989)The Oxford English Dictionary. 2nd edition, Oxford: Clarendon Press, (see Vol. 17, p. 469).Google Scholar
  60. Thomas, T. N. &Redburn, D. A. (1978) Uptake of [14C]aspartic acid and [14C]glutamic acid by retinal synaptosome fractions.Journal of Neurochemistry 31, 63–8.PubMedGoogle Scholar
  61. Tibbs, G. R., Barrie, A. P., Van Mieghem, F., Mcmahon, H. T. &Nicholls, D. G. (1989a) Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects on cytosolic free Ca2+ and glutamate release.Journal of Neurochemistry 53, 1693–9.PubMedGoogle Scholar
  62. Tibbs, G. R., Dolly, J. O. &Nicholls, D. G. (1989b) Dendrotoxin, 4-aminopyridine, and β-bungarotoxin act at common loci but by two distinct mechanisms to induce Ca2+-dependent release of glutamate from guinea-pig cerebrocortical synaptosomes.Journal of Neurochemistry 52, 201–6.PubMedGoogle Scholar
  63. Umbach, J. A., Gundersen, C. B. &Baker, P. F. (1984) Giant synaptosomes.Nature 311, 474–7.PubMedGoogle Scholar
  64. Ushkaryov, Y. A., Petrenko, A. G., Geppert, M. &Südhof, T. C. (1992) Neurexins: synaptic cell surface proteins related to the α-latrotoxin receptor and laminin.Science 257, 50–6.PubMedGoogle Scholar
  65. Whittaker, V. P. (1959) The isolation and characterization of acetylcholine-containing particles from brain.Biochemical Journal 72, 694–706.PubMedGoogle Scholar
  66. Whittaker, V. P. (1962) Pharmcological studies with isolated cell components.Biochemical Pharmacology 9, 61–9.PubMedGoogle Scholar
  67. Whittaker, V. P. (1963) The separation of subcellular structures from brain tissue.Biochemical Society Symposium 23, 109–26.Google Scholar
  68. Whittaker, V. P. (1965) The application of subcellular fractionation techniques to the study of brain function.Progress in Biophysics and Molecular Biology 15, 38–96.Google Scholar
  69. Whittaker, V. P. (1968) The morphology of fractions of rat forebrain synaptosomes separated on continuous density gradients.Biochemical Journal 106, 412–17.PubMedGoogle Scholar
  70. Whittaker, V. P. (1972) The use of synaptosomes in the study of synaptic and neural membrane function. InStructure and Function of Synapses (edited byPappas, G. D. &Purpura, D. P.) pp. 87–100. New York: Raven Press.Google Scholar
  71. Whittaker, V. P. (1976) Tissue fractionation methods in brain research.Progress in Brain Research 45, 45–65.PubMedGoogle Scholar
  72. Whittaker, V. P. (1984) The synaptosome. InHandbook of Neurochemistry, 2nd ed., Vol. 7 (edited byLajtha, A.) pp. 1–40. New York: Plenum.Google Scholar
  73. Whittaker, V. P. (1987) Synaptosome. InEncyclopedia of Neuroscience (edited byAdelman, G.) pp. 1179–81. Boston: Birkhäuser.Google Scholar
  74. Whittaker, V. P. (1988) The cellular basis of synaptic transmission: an overview. InCellular and Molecular Basis of Synaptic Transmission (edited byZimmermann, H.) pp. 1–23. Berlin: Springer Verlag.Google Scholar
  75. Whittaker, V. P. (1991) The vesicular basis of quantized transmitter release: a critical evaluation. InPresynaptic Regulation of Neurotransmitter Release: a Handbook, Vol. 1 (edited byFeigenbaum, J. &Hanani, M.) pp. 39–79. Tel Aviv: Freund Publishing House.Google Scholar
  76. Whittaker, V. P. (1992)The Cholinergic Neuron and its Target. Boston: Birkhäuser.Google Scholar
  77. Whittaker, V. P. &Dowe, G. H. C. (1965) The effect of homogenization conditions on sub-cellular distribution in brain.Biochemical Pharmacology 14, 194–6.PubMedGoogle Scholar
  78. Whittaker, V. P. &Sheridan, M. N. (1965) The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles.Journal of Neurochemistry 12, 363–72.PubMedGoogle Scholar
  79. Whittaker, V. P., Michaelson, I. A. &Kirkland, R. J. A. (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’).Biochemical Journal 90, 293–305.PubMedGoogle Scholar
  80. Wilson, W. S. &Cooper, J. R. (1972) The preparation of cholinergic synaptosomes from bovine superior cervical ganglia.Journal of Neurochemistry 19, 2779–90.PubMedGoogle Scholar
  81. Wolf, M. E. &Kapatos, G. (1989) Flow cytometric analysis and isolation of permeabilized dopamine nerve terminals from rat striatum.Journal of Neuroscience 9, 106–14.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1993

Authors and Affiliations

  • V. P. Whittaker
    • 1
  1. 1.Arbeitsgruppe Neurochemie, Anatomisches InstitutJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations