Mathematische Zeitschrift

, Volume 74, Issue 1, pp 1–17 | Cite as

Finite groups in which the centralizer of any non-identity element is nilpotent

  • Walter Feit
  • Marshall HallJr.
  • John G. Thompson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Burnside, W.: Theory of Groups of Finite Order, 2nd edition. Cambridge 1911.Google Scholar
  2. [2]
    Hall, M.: The Theory of Groups. The Macmillan Co. New York: 1959.Google Scholar
  3. [3]
    Hall, P., andG. Higman: On thep-length ofp-soluble groups and reduction theorems for Burnside's problem. Proc. London math. Soc. (3)6, 1–42 (1956).Google Scholar
  4. [4]
    Hall, P.: A note on soluble groups. J. London math. Soc.3, 98–105 (1928).Google Scholar
  5. [5]
    Higman, G.: Finite groups in which every element has prime power order. J. London math. Soc.32, 335–342 (1957).Google Scholar
  6. [6]
    Suzuki, M.: The nonexistence of a certain type of simple groups of odd order. Proc. Amer. math. Soc.8, 686–695 (1957).Google Scholar
  7. [7]
    Wielandt, H.: Zum Satz vonSylow. Math. Z.60, 407–408 (1954).Google Scholar

Copyright information

© Springer-Verlag 1960

Authors and Affiliations

  • Walter Feit
    • 1
    • 2
    • 3
  • Marshall HallJr.
    • 1
    • 2
    • 3
  • John G. Thompson
    • 1
    • 2
    • 3
  1. 1.Cornell UniversityIthaca(USA)
  2. 2.California Institute of TechnologyPasadena(USA)
  3. 3.Institute for Defense AnalysesPrinceton(USA)

Personalised recommendations