Advertisement

Mathematische Zeitschrift

, Volume 74, Issue 1, pp 1–17 | Cite as

Finite groups in which the centralizer of any non-identity element is nilpotent

  • Walter Feit
  • Marshall HallJr.
  • John G. Thompson
Article

Keywords

Finite Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Burnside, W.: Theory of Groups of Finite Order, 2nd edition. Cambridge 1911.Google Scholar
  2. [2]
    Hall, M.: The Theory of Groups. The Macmillan Co. New York: 1959.Google Scholar
  3. [3]
    Hall, P., andG. Higman: On thep-length ofp-soluble groups and reduction theorems for Burnside's problem. Proc. London math. Soc. (3)6, 1–42 (1956).Google Scholar
  4. [4]
    Hall, P.: A note on soluble groups. J. London math. Soc.3, 98–105 (1928).Google Scholar
  5. [5]
    Higman, G.: Finite groups in which every element has prime power order. J. London math. Soc.32, 335–342 (1957).Google Scholar
  6. [6]
    Suzuki, M.: The nonexistence of a certain type of simple groups of odd order. Proc. Amer. math. Soc.8, 686–695 (1957).Google Scholar
  7. [7]
    Wielandt, H.: Zum Satz vonSylow. Math. Z.60, 407–408 (1954).Google Scholar

Copyright information

© Springer-Verlag 1960

Authors and Affiliations

  • Walter Feit
    • 1
    • 2
    • 3
  • Marshall HallJr.
    • 1
    • 2
    • 3
  • John G. Thompson
    • 1
    • 2
    • 3
  1. 1.Cornell UniversityIthaca(USA)
  2. 2.California Institute of TechnologyPasadena(USA)
  3. 3.Institute for Defense AnalysesPrinceton(USA)

Personalised recommendations