Mathematische Zeitschrift

, Volume 77, Issue 1, pp 149–187 | Cite as

Cohomologie-Operationen und charakteristische Klassen

  • M. F. Atiyah
  • F. Hirzebruch
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Adams, J. F.: On formulae of Thom and Wu. (erscheint demnächst).Google Scholar
  2. [2]
    —: On Chern characters and the structure of the unitary group. Proc. Cambr. Phil. Soc.57, 189–199 (1961).Google Scholar
  3. [3]
    Atiyah, M. F., andF. Hirzebruch: Riemann-Roch theorems for differentiable manifolds. Bull. Amer. Math. Soc.,65, 276–281 (1959).Google Scholar
  4. [4]
    Atiyah, M. F., andF. Hirzebruch: Vector bundles and homogeneous spaces. Differential Geometry. Proceedings of Symposia in Pure Mathematics, vol. 3, American Mathematical Society 1961.Google Scholar
  5. [5]
    Borel, A., andF. Hirzebruch: Characteristic classes and homogeneous spaces I, II, III. Amer J. Math.80, 458–538 (1958);81, 315–382 (1959);82, 491–504 (1960).Google Scholar
  6. [6]
    —, etJ. P. Serre: Le théorème de Riemann-Roch (d'après Grothendieck). Bull. Soc. Math. France86, 97–136 (1958).Google Scholar
  7. [7]
    Cartan, H.: Sur les groupes d'Eilenberg-MacLane, I et II. Proc. Nat. Acad. Sci. U.S.A.40, 467–471 und 704–707 (1954).Google Scholar
  8. [8]
    Dold, A.: Vollständigkeit der Wuschen Relationen zwischen den Stiefel-Whitneyschen Zahlen differenzierbarer Mannigfaltigkeiten. Math. Z.65, 200–206 (1956).Google Scholar
  9. [9]
    Eilenberg, S., andN. Steenrod: Foundations of algebraic topology. Princeton Mathematical Series 15, Princeton University Press 1952.Google Scholar
  10. [10]
    Hirzebruch, F.: On Steenrod's reduced powers, the index of inertia, and the Todd genus. Proc. Nat. Acad. Sci. U.S.A.39, 951–956 (1953).Google Scholar
  11. [11]
    Hirzebruch, F.: Neue topologische Methoden in der algebraischen Geometrie. Ergebnisse der Mathematik. Neue Folge, Heft 9. Berlin-Göttingen-Heidelberg 1956.Google Scholar
  12. [12]
    Hirzebruch, F.: Komplexe Mannigfaltigkeiten. Proc. of the Intern. Congr. of Math. 1958, Cambridge University Press 1960, pp. 119–136.Google Scholar
  13. [13]
    Hirzebruch, F.: A Riemann-Roch theorem for differentiable manifolds. Séminaire Bourbaki, Exp. 177, Février 1959.Google Scholar
  14. [14]
    Milnor, J.: The geometric realization of a semi-simplicial complex. Ann. Math. (2)65, 357–362 (1957).Google Scholar
  15. [15]
    Milnor, J.: Lectures on characteristic classes. Mimeographed notes. Princeton 1957.Google Scholar
  16. [16]
    —: The Steenrod algebra and its dual. Ann. Math.67, 150–171 (1958).Google Scholar
  17. [17]
    —: On the cobordism ring Ω* and a complex analogue, Part I. Amer. J. Math.82, 505–521 (1960). Part II erscheint demnächst.Google Scholar
  18. [18]
    Puppe, D.: Homotopiemengen und ihre induzierten Abbildungen I. Math Z.69, 299–344 (1958).Google Scholar
  19. [19]
    Serre, J. P.: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comm. Math. Helv.27, 198–232 (1953).Google Scholar
  20. [20]
    Steenrod, N.: Homology groups of symmetric groups and reduced power operations. Proc. Nat. Acad. Sci. U.S.A.39, 213–223 (1953).Google Scholar
  21. [21]
    Steenrod, N.: Cohomology operations and obstructions to extending continuous functions. Colloquium lectures. Mimeographed notes. Princeton 1957.Google Scholar
  22. [22]
    Thom, R.: Quelques propriétés globales des variétés différentiables. Comm. Math. Helv.28, 17–86 (1954).Google Scholar
  23. [23]
    Uspensky, J. V., andM. A. Heaslet: Elementary Number Theory. New York 1939.Google Scholar
  24. [24]
    Whitehead, J. H. C.: Combinatorial homotopy I. Bull. Amer. Math. Soc.55, 213–245 (1949).Google Scholar
  25. [25]
    Wu Wen-Tsun: Classes caractéristiques eti-carrés d'une variété. C. R. Acad. Sci., Paris230, 508–511 (1950).Google Scholar
  26. [26]
    Wu Wen-Tsun: Sur les puissances de Steenrod. Colloque de Topologie de Strasbourg 1951 (vervielfältigt).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • M. F. Atiyah
    • 1
    • 2
    • 3
  • F. Hirzebruch
    • 1
    • 2
    • 3
  1. 1.Mathematisches Institut der UniversitätBonn
  2. 2.Pembroke CollegeCambridge
  3. 3.Mathematical InstituteOxford

Personalised recommendations