Advertisement

Tolerance reasoning and set-up planning for brakeforming

  • L. J. De Vin
  • A. H. Streppel
Article

Abstract

Brakeforming is widely applied in high-variety small-batch manufacturing of sheet metal components to form bends that have a straight axis and a constant radius. The process typically involves a relatively large number of set-ups. The paper describes the appropriate search technique to solve the set-up planning problem as well as some of the manufacturing rules that can be applied. Special attention is paid to the accuracy aspect in the selection of set-ups for non-90° bend angles. As an example, the set-up planning procedure is demonstrated for a sheet metal bracket.

Keywords

Bending Set-ups Sheet metal Tolerancing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. De Vin, A. H. Streppel and H. J. J. Kals, “The accuracy aspect in set-up determination for sheet bending”, International Journal of Advanced Manufacturing Technology, 11, pp. 179–185, 1996.Google Scholar
  2. 2.
    L. J. De Vin, A. H. Streppel and H. J. J. Kals, “Tolerancing and sheet bending in small batch part manufacturing”, Annals CIRP, 43(1), pp. 421–424, 1994.Google Scholar
  3. 3.
    L. J. De Vin, J. De Vries, A. H. Streppel and H. J. J. Kals, “Computer aided process planning for small batch manufacturing of sheet metal components”, Proceedings of the IMC-9 Conference, Dublin, Ireland, pp. 151–160, 1992.Google Scholar
  4. 4.
    M. Hoffmann, U. Gieβler and M. Geiger, “Computer-aided generation of bending sequences for die-bending machines”, Journal of Material Processing Technology, 30, pp. 1–12, 1992.Google Scholar
  5. 5.
    R. J. Stamp and C. F. Earl, “Production of sheet metal components by an automatically planned robot assisted press brake”, Proceedings of the International SheMet92 Conference, Birmingham, UK, pp. 211–220, 1992.Google Scholar
  6. 6.
    M. Shpitalni and D. Sadden, “Automatic determination of bending sequence in sheet metal products”, Annals CIRP, 43(1), pp. 23–26, 1994.Google Scholar
  7. 7.
    J. Fleischer, Automatische Ermittlung der Abkantreihenfolge, VDI-Z 31(5), pp. 4–46, 1989.Google Scholar
  8. 8.
    L. J. De Vin, “Computer aided process planning for the bending of sheet metal components”, PhD Thesis, University of Twente, Enschede, 1994.Google Scholar
  9. 9.
    J. R. Duflou and J. P. Kruth, “A precedence constraint oriented inference engine for bending sequence identification”, Proceedings of the International SheMet97 Conference, Newtownabbey, UK, pp. 93–103, 1997.Google Scholar
  10. 10.
    J. De Vries, “Integrated process planning for small batch manufacturing of sheet metal components”, PhD Thesis, University of Twente, 1996.Google Scholar
  11. 11.
    J. Reissner and R. Ehrismann, “Einsatz von Regel- und Algor-ithmenbasierten Verfahren bei der Bestimmung von Biegefolgen”, VDI Berichte, 867, pp. 283–297, 1990.Google Scholar
  12. 12.
    E. Klaassen, “Bending sequence pre-determination and Collision checking for PART-S”, MSc Thesis, University of Twente, 1993.Google Scholar
  13. 13.
    S. K. Ong, L. J. De Vin, A. Y. C. Nee and H. J. J. Kals, “Fuzzy set theory applied to set-up sequencing for sheet bending”, International Journal of Materials Processing Technology, 69(1–3), pp. 29–36, 1997.Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  1. 1.Department of Engineering ScienceHögskolan i SkövdeSkövdeSweden
  2. 2.Laboratory of Production and Design EngineeringUniversity of TwenteThe Netherlands

Personalised recommendations