Advertisement

Acta Informatica

, Volume 29, Issue 4, pp 383–394 | Cite as

An all-round sweep algorithm for 2-dimensional nearest-neighbor problems

  • Klaus Hinrichs
  • Jurg Nievergelt
  • Peter Schorn
Article

Abstract

We present a simple, efficient, robust plane-sweep algorithm that solves 2-dimensional nearest-neighbor problems in asymptotically optimal timeO(n logn). A “foolproof” implementation guarantees an exact result at the cost of using triple-precision integer arithmetic at some key steps.

Keywords

Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Fo 87] Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica2, 153–174 (1987)Google Scholar
  2. [HNS 89] Hinrichs, K., Nievergelt, J., Schorn, P.: A sweep algorithm and its implementation: The all-nearest-neighbors problem revisited 14-th International Workshop on Graph-Theoretic Concepts in Computer Science (WG '88), Amsterdam., In: Leeuven, J. van (ed.) Graph-theoretic concepts in computer science (Lect. Notes Comput. Sci., Vol. 344, pp. 442–457) Berlin Heidelberg New York: Springer 1989Google Scholar
  3. [Mi 89] Milenkovic, V.: Double precision geometry: a general technique for calculating line and segment intersections using rounded arithmetic. 30th Annual IEEE Symposium on Foundations of Computer Science, 1989, pp. 500–505Google Scholar
  4. [Sch 91] Schorn, P.: Robust algorithms in, a program library for geometric computation. PhD Dissertation No. 9519, ETH Zurich, Switzerland, 1991Google Scholar
  5. [SH 75] Shamos, M., Hoey, D.: Closest-point problems. 16th Annual IEEE Symposium on Foundations of Computer Science, 1975, pp. 151–162Google Scholar
  6. [Va 89] Vaidya, P.: AO(n logn) algorithm for the all-nearest-neighbors problem. Discrete Comput. Geom.4, 101–115 (1989)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Klaus Hinrichs
    • 1
  • Jurg Nievergelt
    • 2
  • Peter Schorn
    • 2
  1. 1.FB 15-InformatikWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.Institut für Theoretische InformatikETHZürichSwitzerland

Personalised recommendations