Acta Informatica

, Volume 28, Issue 7, pp 693–701 | Cite as

On fast multiplication of polynomials over arbitrary algebras

  • David G. Cantor
  • Erich Kaltofen
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A., Hopcroft, J., Ullman, J.: The design and analysis of computer algorithms. Reading, MA: Addison-Wesley 1974Google Scholar
  2. 2.
    Apostol, T.M.: Resultants of cyclotomic polynomials. Proc. Am. Math. Soc.24, 457–462 (1970)Google Scholar
  3. 3.
    Cantor, D.G.: On arithmetical algorithms over finite fields. J. Combinat. Theory A50, 285–300 (1989)Google Scholar
  4. 4.
    Chudnovsky, D.V., Chudnovsky, G.V.: Algebraic complexities and algebraic curves over finite fields. J. Complexity4, 285–316 (1988)Google Scholar
  5. 5.
    Grigoriev, D.Yu.: Multiplicative complexity of a pair of bilinear forms and of the polynomial multiplication. Proc. 7th MFCS. (Lect. Notes Comput. Sci., vol. 64, pp. 250–256) Berlin, Heidelberg, New York: Springer 1978Google Scholar
  6. 6.
    Kaltofen, E.: Greatest common divisors of polynomials given by straight-line programs. J. ACM35, 231–264 (1988)Google Scholar
  7. 7.
    Kaminski, M.: An algorithm for polynomial multiplication that does not depend on the ring of constants. J. Algorithms9, 137–147 (1988)Google Scholar
  8. 8.
    Knuth, D.E.: The art of computer programming, vol. 2. 2nd edn. Reading, MA: Addison-Wesley 1981Google Scholar
  9. 9.
    Lang, S.: Algebraic number theory. Reading, MA: Addison-Wesley 1970Google Scholar
  10. 10.
    Lempel, A., Seroussi, G., Winograd, S.: On the complexity of multiplication in finite fields. Theoret. Comput. Sci.22, 285–296 (1983)Google Scholar
  11. 11.
    Nussbaumer, H.J.: Fast polynomial transform algorithms for digital convolutions. IEEE Trans. ASSP28, 205–215 (1980)Google Scholar
  12. 12.
    Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inf.7, 395–398 (1977)Google Scholar
  13. 13.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing7, 281–292 (1971)Google Scholar
  14. 14.
    Winograd, S.: Arithmetic complexity of computations. CBMS-NSF Regional Conference Series in Applied Math. 33. Philadelphia, PA: SIAM 1980Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • David G. Cantor
    • 1
  • Erich Kaltofen
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Computer ScienceRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations