Acta Informatica

, Volume 28, Issue 7, pp 611–629 | Cite as

A fixed point approach to parallel discrete event simulation

  • Werner Pohlmann
Article
  • 31 Downloads

Abstract

Discrete event simulation is viewed as solving a fixed point problem whose unknowns are infinite histories or streams of event and time information. Stream domains provide two notions of convergence, which correspond to the usual categorization of simulation methods. Metric convergence leads to optimistic parallel simulation (the classic event list mechanism turns out to be a specialization), and convergence in the sense of partial orders leads to conservative parallel simulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Bakker, J.: Mathematical theory of program correctness. Englewood Cliffs: Prentice Hall 1980Google Scholar
  2. 2.
    de Bakker, J., Zucker, J.I.: Processes and the denotational semantics of concurrency. Inf. Control54, 70–182 (1982)Google Scholar
  3. 3.
    Bertsekas, D., Tsitsiklis, J.: Parallel and distributed computation: numerical methods. Englewood Cliffs: Prentice Hall 1989Google Scholar
  4. 4.
    Broy, M.: A theory for nondeterminism, parallelism, communication and concurrency. Habilitationsschrift, Technische Universität München, 1982Google Scholar
  5. 5.
    Broy, M.: Applicative real time programming. In: Mason, R.E. (ed.) Proc. Information Processing' 83. Amsterdam: North Holland 1983Google Scholar
  6. 6.
    Chandy, K.M., Misra, J.: Distributed simulation: a case study in design and verification of distributed programs. IEEE Trans. Software Eng.5, 440–452 (1979)Google Scholar
  7. 7.
    Chandy, K.M., Misra, J.: Deadlock absence proofs for networks of communicating processes. Inf. Process. Lett.9, 185–189 (1979)Google Scholar
  8. 8.
    Chandy, K.M., Misra, J.: Asynchronous distributed simulation via a sequence of parallel computations. Commun. ACM24, 198–205 (1981)Google Scholar
  9. 9.
    Chandy, K.M., Misra, J.: Parallel program design. Reading: Addison-Wesley 1989Google Scholar
  10. 10.
    Chandy, K.M., Sherman, R.: Space-time and simulation. Proc. Distributed Simulation, Simulat. Ser.21(2), 53–57 (1989)Google Scholar
  11. 11.
    Delgado Kloos, C.: Semantics of digital circuits. (Lect. Notes Comput. Sci., vol. 285). Berlin, Heidelberg, New York: Springer 1987Google Scholar
  12. 12.
    Fischer, K.: Ereignisfluß-Modelle für die effiziente Simulation digitaler Systeme. Dissertation, Universität Passau, 1986Google Scholar
  13. 13.
    Franta, W.R.: The process view of simulation. New York: North Holland 1977Google Scholar
  14. 14.
    Fujimoto, R.M.: Lookahead in parallel dicrete event simulation. Proc. Int. Conf. on Parallel Processing, III 34–41, 1988Google Scholar
  15. 15.
    Fujimoto, R.M.: Time warp on a shared memory multiprocessor. Proc. Int. Conf. on Parallel Processing, III 242–249, 1989Google Scholar
  16. 16.
    Fujimoto, R.M.: Parallel dicrete event simulation. Commun ACM33(10), 31–53 (1990)Google Scholar
  17. 17.
    Hausdorff, F.: Grundzüge der Mengenlehre. 1914. Repr. New York: Chelsea 1978Google Scholar
  18. 18.
    Henson, M.C.: Elements of functional languages. Oxford: Blackwell 1987Google Scholar
  19. 19.
    Jefferson, D.R.: Virtual time. ACM TOPLAS7, 404–425 (1985)Google Scholar
  20. 20.
    Jefferson, D.R., Sowizral, H.: Fast concurrent using the time warp mechanism. Proc. Distributed Simulation, Simulat. Ser.15(2), 63–69 (1985)Google Scholar
  21. 21.
    Jessen, E., Valk, R.: Rechensysteme — Grundlagen der Modellbildung. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  22. 22.
    Kahn, G.: The semantics of a simple language for parallel processing. In: Rosenfeld, J.L. (ed.) Proc. Inf. Processing74, 471–475 (1974)Google Scholar
  23. 23.
    Keyszig, E.: Introductory functional analysis with applications. New York: Wiley 1978Google Scholar
  24. 24.
    Misra, J.: Distributed discrete-event simulation. ACM Comput. Surv.18 (1), 39–64 (1986)Google Scholar
  25. 25.
    Nivat, M.: Infinite words, infinite trees, infinite computations. In: de Bakker, J.W., van Leeuwen, J. (eds.) Foundations of computer science, III, Mathematical Centre Tracts vol. 109 pp. 3–52. Amsterdam: Math. Centre 1979Google Scholar
  26. 26.
    Peyton-Jones, S.L.: The implementation of functional programming languages. Englewood Cliffs: Prentice Hall 1987Google Scholar
  27. 27.
    Plotkin, G.D.: Domain theory. Lecture, Edinburgh, 1981Google Scholar
  28. 28.
    Reichenbach, H.: Philosophie der Raum-Zeit-Lehre. 1928. Repr. Basel: Birkhäuser 1977Google Scholar
  29. 29.
    Sauer, C.H., MacNair, E.A.: Simulation of computer communication systems. Englewood Cliffs: Prentice Hall 1983Google Scholar
  30. 30.
    Winskel, G.: Events in computation. Thesis, Edinburgh 1980Google Scholar
  31. 31.
    Zeigler, B.P.: Theory of modelling and simulation. New York: Wiley 1976Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Werner Pohlmann
    • 1
  1. 1.Institut für InformatikTechnische UniversitätMünchen 2Germany

Personalised recommendations