Advertisement

Acta Mechanica

, Volume 108, Issue 1–4, pp 1–22 | Cite as

A mathematical model of suspension with saltation

  • W. D. Scott
  • J. M. Hopwood
  • K. J. Summers
Invited Review Article

Summary

A theoretical approach to the treatment of wind erosion data, particularly from a wind tunnel, is presented. Considerations are given to the utilisation of a real data set in validation of the model, data that will be presented in a forthcoming paper. Following this, the physics of particle suspension, saltation and the turbulent boundary layer are examined. Two different mathematical models evolve: one considers only suspension, another evokes Bagnold's observation that eroding material merely shifts the velocity profile and the effect of the airborne material on the effective density of the air parcel. These produce a final, relatively simple expression that credibly fits the data of Gerety and Slingerland. A critique of the approach reveals it to be an adequate expression of the known mechanisms of suspension and saltation. Derived algebraic forms for integrated collectors show several of the same “logarithmic power” dependences. Importantly, the results show little influence of saltation itself on the profile. It appears that the saltation process is responsible for a feedback such that the eddy diffusion process for particle movement is effectively enhanced. The combination of an appropriate correction of the pitot data (following Scott and Carter) and a complete mass balance has removed the “kink” from the velocity profile and also the need to consider the saltation process itself in the particle mass balance.

Keywords

Boundary Layer Velocity Profile Mass Balance Wind Tunnel Particle Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bagnold, R. A.: The physics of blown sand and desert dunes. London: Chapman and Hall, 1941 reprinted 1984.Google Scholar
  2. [2]
    Chepil, W. S., Woodruff, N. P.: The physics of wind erosion and its control. Adv. Agronomy15, 211–302 (1963).Google Scholar
  3. [3]
    Skidmore, E. L.: Wind erosion calculator: revision of residue table. J. Soil Water Conservation38, 110–112 (1983).Google Scholar
  4. [4]
    Owen, P. R.: Saltation of uniform grains in air. J. Fluid Mech.20, 225–242 (1964).Google Scholar
  5. [5]
    Ungar, J. E., Haff, P. K.: Steady state saltation in air. Sedimentology34, 289–299 (1988).Google Scholar
  6. [6]
    Werner, B. T.: A steady-state model of wind blown sand transport. J. Geology98, 1–17 (1990).Google Scholar
  7. [7]
    Anderson, R. S., Haff, P. K.: Wind modification and bed response during saltation of sand in air. Acta Mech. Suppl.1, 21–51 (1991).Google Scholar
  8. [8]
    Zingg, A. W.: Wind-tunnel studies of the movement of sedimentary material. Studies in Engineering: Bulletin No. 34, Iowa University 1953.Google Scholar
  9. [9]
    Williams, G. P.: Some aspects of the eolian saltation load. Sedimentology3, 257–287 (1964).Google Scholar
  10. [10]
    Gerety, K. M., Slingerland, R.: Nature of the saltating population in wind tunnel experiments with heterogeneous size-density sands. In: Developments in Sedimentology 38 Eolian Sediments and Processes (Brookfield, M. E., Ahlbrandt, T. S., eds.), pp. 15–131. Amsterdam: Elsevier 1983.Google Scholar
  11. [11]
    White, B. R., Mounla, H.: An experimental study of Froude number effect on wind-tunnel saltation. Acta Mech. Suppl.1, 145–157 (1991).Google Scholar
  12. [12]
    Pye, K.: Aeolian dust and dust deposits. London: Academic Press 1987.Google Scholar
  13. [13]
    Barndorff-Nielsen, O. E., Jensen, J. L., Neilsen, H. L., Rasmussen, K. R., Sorensen, M.: Proceedings of the international workshop on the physics of blown sand. Memoirs No. 8: Denmark: Dept. Theor. Statist., Aarhus University 1985.Google Scholar
  14. [14]
    Brancatisano, T., Carter, D., Hopwood, J., Raupach, M., Scott, W. D., Smith, S., Tubb, J.: Erosion wind tunnel workshop. Perth: Div. of Env. Sciences, Murdoch University 1991.Google Scholar
  15. [15]
    Barndorff-Nielsen, O. E., Willetts, B. B.: International workshop on aeolean grain transport. Acta Mech. Suppl.1 and Suppl.2 (1991).Google Scholar
  16. [16]
    Scott, W. D., Findlater, P., Hopwood, J. M., Tubb, J.: Precis of the erosion wind tunnel workshop. Contributions from the wind erosion study group, 1994. See also B.A.M.S.73, 821 (1992).Google Scholar
  17. [17]
    Anderson, R. S., Willetts, B. B.: A review of recent progress in our understanding of aeolian sediment transport. Acta Mech. Suppl.1, 1–19 (1991).Google Scholar
  18. [18]
    Raupach, M. R.: Saltation layers, vegetation canopies and roughness lengths. Acta Mech. Suppl.1, 83–96 (1991).Google Scholar
  19. [19]
    Butterfield, G. R.: Grain transport rates in steady and unsteady wind flows. Acta Mech. Suppl.1, 97–122 (1991).Google Scholar
  20. [20]
    Carminati, J., Devitt, J. S., Scott, W. D.: On the non-uniqueness of solutions in the modelling of steady wind dlows. Computers and Fluids (accepted for publication).Google Scholar
  21. [21]
    McEwan, I. K., Willetts, B. B.: Numerical model of the saltation cloud. Acta Mech. Suppl.1, 53–66 (1991).Google Scholar
  22. [22]
    Rasmussen, K. R., Mikkelsen, H. E.: Wind tunnel observations of aeolian transport rates. Acta Mech. Suppl.1, 135–144 (1991).Google Scholar
  23. [23]
    Scott, W. D., Carter, D. J.: The logarithmic profile in wind erosion: an algebraic solution. Boundary Layer Meteorology34, 303–310 (1986).Google Scholar
  24. [24]
    Gillette, D. A., Walker, T. R.: Characteristics of airborne particles produced by wind erosion of sandy soil, high plains of West Texas. Soil Science123, 97–110 (1977).Google Scholar
  25. [25]
    Smith, J. D., McLean, S. R.: Spatially averaged flow over a wavy surface. J. Geophysical Res.82, 1735–1746 (1977).Google Scholar
  26. [26]
    Scott, W. D.: Wind erosion of residue waste. part I. Using the wind profile to characterize wind erosion. Catena21, 291–303 (1994).Google Scholar
  27. [27]
    Gillette, D. A.: Fine particle emissions due to wind erosion. Trans. ASAE20, 890–897 (1977).Google Scholar
  28. [28]
    Gillette, D. A.: Environmental factors affecting dust emission by wind erosion. In: Sahara dust mobilization, transport, deposition (Morales, C. J., ed.), pp. 3–91, New York: Wiley 1979.Google Scholar
  29. [29]
    Hopwood, J., Scott, W.: The sizing of particles in terms of terminal velocity: A note on the interpretation of data of Gerety and Slingerland with particles sized in terms of terminal velocity. Catena17, 327–332 (1990).Google Scholar
  30. [30]
    Budd, W. F.: The drifting of non-uniform snow particles. In: Studies in Antarctic Meteorology, Antartic research Series9, (Rubin, M., ed.), pp. 59–70. American Geophysical Union 1966.Google Scholar
  31. [31]
    Allen, J. R. L.: Physical processes of sedimentation. London: George Allen and Unwin 1970.Google Scholar
  32. [32]
    Greeley, R., Iversen, J. D.: Wind as a geological process. Cambridge: Cambridge University Press 1985.Google Scholar
  33. [33]
    Weast, R. C., Astle, M. J. (eds.): CRC Handbook of chemistry and physics, 60th ed. Boca Raton: CRC Press 1981.Google Scholar
  34. [34]
    Gillette, D. A., Goodwin, P. A.: Microscale transport of sand-sized soil aggregates eroded by wind. J. Geophys. Res.79, 4080–4084 (1974).Google Scholar
  35. [35]
    Tommerup, I. C., Carter, D. J.: Dry separation of microorganisms from soil. Soil Biology Biochem.14, 69–71 (1982).Google Scholar
  36. [36]
    Bell, E. P.: Statistical and micrometeorological modelling of windborne dust. Honours Thesis, Murdoch University, Western Australia 1984.Google Scholar
  37. [37]
    Sorensen, M.: An analytical model of wind-blown sand transport. Acta Mech. Suppl.1, 67–81 (1991).Google Scholar
  38. [38]
    de Ploey, J.: Some field measurements ans experimental data on wind-blown sands. In: Assessment of Erosion (M. de Boot, D. Gabriels, eds.), pp. 541–552, Workshop on Assessement of Erosion in USA and Europe, State University Ghent. New York: Wiley 1978.Google Scholar
  39. [39]
    Nickling, W. G.: Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Can. J. Earth Sci.15, 1069–1084 (1978).Google Scholar
  40. [40]
    Hidy, G. M.: Aerosols, an industrial and environmental science. Orlando: Academic Press 1984.Google Scholar
  41. [41]
    Dyer, K. R., Soulsby, R. L.: Sand transport on the continental shelf. Annu. Rev. Fluid Mech.20, 297–324 (1988).Google Scholar
  42. [42]
    Soulsby, R. L., Salkield, A. P., Haine, R. A., Wainwright, B.: Observations of the turbulent fluxes of suspended sand near the sea-bed. In: Transport of suspended solids in open channels (Bechteler, W., ed.), pp. 183–186. Rotterdam: Balkenner 1986.Google Scholar
  43. [43]
    Hinze, J. O.: Turbulence: New York: McGraw-Hill 1975.Google Scholar
  44. [44]
    Graf, W. H.: Hydraulics of sediment transport: Littleton: Water Resources Publ. 1984.Google Scholar
  45. [45]
    Färber, K.: Investigations of particle motions in turbulent flow. In: Transport of suspended solids in open channels (Bechteler, W., ed.), pp. 33–36. Rotterdam: Balkenner 1986.Google Scholar
  46. [46]
    Lees, B. J.: Relationship between eddy viscosity of seawater and eddy diffusivity of suspended particles. Geo. Mar. Lett.1, 149–254 (1981).Google Scholar
  47. [47]
    Schmidt, R. A.: Vertical profiles of wind speed, snow concentration, and humidity in blowing snow. Boundary Layer Meteorology223, 223–246 (1982).Google Scholar
  48. [48]
    Greeley, R., Williams, S. H., Marshall, J. R.: Velocities of windblown particles in saltation: Preliminary laboratory and field measurements. In: Developments in Sedimentology 38 Eolian Sediments and Processes (Brookfield, M. E., Ahlbrandt, T. S., eds.), pp. 133–148. Amsterdam: Elsevier 1983.Google Scholar
  49. [49]
    McDonald, H., Camarata, F. J.: An extended mixing length approach for computing the turbulent boundary layer development. In: Computations of turbulent boundary layers (Kline, S. J., Morkovin, M. V., Sovran, G., Cockrell, D. J., eds.), Vol. 1, Thermosciences Division, Dep. of Mech. Eng., Stanford, page xxiii (1969).Google Scholar
  50. [50]
    Raupach, M. R., Leys, J. F.: Aerodynamics of a portable wind erosion tunnel for measuring soil erodability by wind. Aus. J. Soil Res.28, 177–191 (1990).Google Scholar
  51. [51]
    Scott, W. D., Tubb, J.: An assessment of agricultural wind tunnels. In: Preprint of Conf. on Agricultural Eng. (M. McKay et al., eds.), pp. 138–146, Toowoomba, Queensland 1990.Google Scholar
  52. [52]
    Drew, D. R.: Introduction to operations research. Lecture Notes #2. Bangkok: Asian Institute of Technology 1973.Google Scholar
  53. [53]
    Abramowitz, M., Stegun, I. A.: Handbook of mathematical function with formulas, graphs and mathematical tables. New York: Dover 1972.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • W. D. Scott
    • 1
  • J. M. Hopwood
    • 2
  • K. J. Summers
    • 3
  1. 1.Division of Environmental Sciences, School of Biological and Environmental SciencesMurdoch UniversityMurdochAustralia
  2. 2.Department of MathematicsUniversity of Western AustraliaNedlandsAustralia
  3. 3.Engineering DepartmentALCOA of AustraliaApplecrossAustralia

Personalised recommendations