Acta Mechanica

, Volume 131, Issue 3–4, pp 169–175 | Cite as

Periodic unsteady flows of a non-Newtonian fluid

  • T. Hayat
  • S. Asghar
  • A. M. Siddiqui
Original Papers

Summary

Exact analytic solutions for the flow of non-Newtonian fluid generated by periodic oscillations of a rigid plate are discussed. Some interesting flows caused by certain special oscillations are also obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Truesdell, C., Noll, W.: The non-linear field theories of mechanics (Handbuch der Physik, III/3). Berlin Heidelberg New York: Springer 1965.Google Scholar
  2. [2]
    Srivatsava, A. C.: The flow of a non-Newtonian liquid near a stagnation point. ZAMP9, 80–84 (1958).Google Scholar
  3. [3]
    Rajeswari, G., Rathna, S. L.: Flow of a particular class of non-Newtonian visco-elastic and visco-inelastic fluids near a stagnation point. ZAMP13, 43–57 (1962).Google Scholar
  4. [4]
    Beard, D. W., Walters, K.: Elastico-viscous boundary layer flows. Proc. Camb. Phil. Soc.60, 667–674 (1964).Google Scholar
  5. [5]
    Mansutti, D., Pontrelli, G., Rajagopal, K. R.: Non-similar flow of a non-Newtonian fluid past a wedge. Int. J. Eng. Sci.31, 637–647 (1993).Google Scholar
  6. [6]
    Siddiqui, A. M., Kaloni, P. N.: Certain inverse solutions of a non-Newtonian fluid., Int. J. Non-Lin. Mech.21, 459–473 (1986).Google Scholar
  7. [7]
    Massoudi, M., Ramezan, M.: Effect of injection or suction on the Falkner-Skin flows of second grade fluids. Int. J. Non-Lin. Mech.24, 221–227 (1989).Google Scholar
  8. [8]
    Benharbit, A. M., Siddiqui, A. M.: Certain solutions of equations of the planar motion of a second grade fluid for steady and unsteady cases. Acta Mech.94, 85–96 (1992).Google Scholar
  9. [9]
    Erdogan, M. E.: Plane surface suddenly set in motion in a non-Newtonian fluid. Acta Mech.108, 179–187 (1995).Google Scholar
  10. [10]
    Rajagopal, K. R., Gupta, A. S., Wineman, A. S.: On a boundary layer theory for non-Newtonian fluids. Lett. Appl. Eng. Sci.18, 875–883 (1980).Google Scholar
  11. [11]
    Rajagopal, K. R., Gupta, A. S., Na, T. Y.: A note on the Falkner-Skan flows of a non-Newtonian fluid. Int. J. Non-Lin. Mech.18, 313–320 (1983).Google Scholar
  12. [12]
    Rajagopal, K. R.: A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Non-Lin. Mech.17, 369–373 (1982).Google Scholar
  13. [13]
    Coleman, B. D., Noll, W.: An approximation theorem for functional with application in continuum mechanics. Arch. Rat. Mech. Anal.6, 335–370 (1960).Google Scholar
  14. [14]
    Rivlin, R. S., Ericksen, J. L.: Stress deformation relations for isotropic materials. J. Rat. Mech. Anal.4, 323–425 (1955).Google Scholar
  15. [15]
    Dunn, J. E., Fosdick, R. L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Rat. Mech. Mech. Anal.56, 191–252 (1974).Google Scholar
  16. [16]
    Fosdick, R. L., Rajagopal, K. R.: Anomalous features in the model of second-order fluids. Arch. Rat. Mech. Mech. Anal.70, 145–152 (1979).Google Scholar
  17. [17]
    Dunn, J. E., Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamics analysis. Int. J. Eng. Sci.33, 689–729 (1995).Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • T. Hayat
    • 1
  • S. Asghar
    • 1
  • A. M. Siddiqui
    • 2
  1. 1.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Department of MathematicsPennsylvania State UniversityYorkUSA

Personalised recommendations