Acta Mechanica

, Volume 131, Issue 3–4, pp 169–175 | Cite as

Periodic unsteady flows of a non-Newtonian fluid

  • T. Hayat
  • S. Asghar
  • A. M. Siddiqui
Original Papers


Exact analytic solutions for the flow of non-Newtonian fluid generated by periodic oscillations of a rigid plate are discussed. Some interesting flows caused by certain special oscillations are also obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Truesdell, C., Noll, W.: The non-linear field theories of mechanics (Handbuch der Physik, III/3). Berlin Heidelberg New York: Springer 1965.Google Scholar
  2. [2]
    Srivatsava, A. C.: The flow of a non-Newtonian liquid near a stagnation point. ZAMP9, 80–84 (1958).Google Scholar
  3. [3]
    Rajeswari, G., Rathna, S. L.: Flow of a particular class of non-Newtonian visco-elastic and visco-inelastic fluids near a stagnation point. ZAMP13, 43–57 (1962).Google Scholar
  4. [4]
    Beard, D. W., Walters, K.: Elastico-viscous boundary layer flows. Proc. Camb. Phil. Soc.60, 667–674 (1964).Google Scholar
  5. [5]
    Mansutti, D., Pontrelli, G., Rajagopal, K. R.: Non-similar flow of a non-Newtonian fluid past a wedge. Int. J. Eng. Sci.31, 637–647 (1993).Google Scholar
  6. [6]
    Siddiqui, A. M., Kaloni, P. N.: Certain inverse solutions of a non-Newtonian fluid., Int. J. Non-Lin. Mech.21, 459–473 (1986).Google Scholar
  7. [7]
    Massoudi, M., Ramezan, M.: Effect of injection or suction on the Falkner-Skin flows of second grade fluids. Int. J. Non-Lin. Mech.24, 221–227 (1989).Google Scholar
  8. [8]
    Benharbit, A. M., Siddiqui, A. M.: Certain solutions of equations of the planar motion of a second grade fluid for steady and unsteady cases. Acta Mech.94, 85–96 (1992).Google Scholar
  9. [9]
    Erdogan, M. E.: Plane surface suddenly set in motion in a non-Newtonian fluid. Acta Mech.108, 179–187 (1995).Google Scholar
  10. [10]
    Rajagopal, K. R., Gupta, A. S., Wineman, A. S.: On a boundary layer theory for non-Newtonian fluids. Lett. Appl. Eng. Sci.18, 875–883 (1980).Google Scholar
  11. [11]
    Rajagopal, K. R., Gupta, A. S., Na, T. Y.: A note on the Falkner-Skan flows of a non-Newtonian fluid. Int. J. Non-Lin. Mech.18, 313–320 (1983).Google Scholar
  12. [12]
    Rajagopal, K. R.: A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Non-Lin. Mech.17, 369–373 (1982).Google Scholar
  13. [13]
    Coleman, B. D., Noll, W.: An approximation theorem for functional with application in continuum mechanics. Arch. Rat. Mech. Anal.6, 335–370 (1960).Google Scholar
  14. [14]
    Rivlin, R. S., Ericksen, J. L.: Stress deformation relations for isotropic materials. J. Rat. Mech. Anal.4, 323–425 (1955).Google Scholar
  15. [15]
    Dunn, J. E., Fosdick, R. L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Rat. Mech. Mech. Anal.56, 191–252 (1974).Google Scholar
  16. [16]
    Fosdick, R. L., Rajagopal, K. R.: Anomalous features in the model of second-order fluids. Arch. Rat. Mech. Mech. Anal.70, 145–152 (1979).Google Scholar
  17. [17]
    Dunn, J. E., Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamics analysis. Int. J. Eng. Sci.33, 689–729 (1995).Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • T. Hayat
    • 1
  • S. Asghar
    • 1
  • A. M. Siddiqui
    • 2
  1. 1.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Department of MathematicsPennsylvania State UniversityYorkUSA

Personalised recommendations