Applied Physics A

, Volume 39, Issue 1, pp 59–64 | Cite as

Ion-beam mixing in pure and in immiscible copper bilayer systems

  • R. S. Averback
  • D. Peak
  • L. J. Thompson
Contributed Papers


Ion-beam mixing was measured in immiscible Cu bilayer systems after Kr irradiation at 6 K and at 295 K. It was observed that for the systems which form miscible liquids but which have limited solid solubility, Cu-Nb and Cu-Bi, mixing occurs at 6 but not at 295 K. For a system which is not miscible in either the solid or liquid state, mixing does not occur at either 6 or 295 K. Mixing was also measured in pure Cu isotope bilayer specimens,63Cu–65Cu, to provide a standard for the other measurements. The results are interpreted on the basis of an atomistic model of ion beam mixing. The model assumes that point defects are created in the initial phases of the cascade evolution, and that these defects migrate during the later ‘thermal spike’ phase.


61.80 66.30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Poate, A.G. Collis: InTreatise of Materials Science and Technology, Vol. 18, Ion Implantation, ed. by J.K. Hirvonen (Academic, New York 1980) p. 85Google Scholar
  2. 2.
    Z.L. Wang, J.F. Westendorp, F.W. Saris: Nucl. Instrum. Methods209/210, 173 (1983)Google Scholar
  3. 3.
    Y.-T. Cheng, M. Van Rossum, M-A. Nicolet, W.L. Johnson: Appl. Phys. Lett.45, 185 (1984)Google Scholar
  4. 4.
    R.S. Averback, K.L. Merkle: Phys. Rev. B16, 3860 (1977)Google Scholar
  5. 5.
    R.S. Averback: J. Nucl. Mater.108/109, 33 (1982)Google Scholar
  6. 6.
    W.L. Johnson, Y.-T. Cheng, M. Van Rossum, M.-A. Nicolet: Nucl. Instrum. Methods137/8, 657 (1985)Google Scholar
  7. 7.
    M.-P. Macht, V. Naundorf: J. Appl. Phys.53, 7551 (1982)Google Scholar
  8. 8.
    R.S. Averback, D. Peak: Appl. Phys. A38, 139–143 (1985)Google Scholar
  9. 9.
    The SIMS analyses of the Cu isotope samples were carried out in the Center for Microanalysis of Materials, University of Illinois-Urbana which is supported by D.O.E. under contract D.E.-AC02-76ER01198Google Scholar
  10. 10.
    J.P. Biersack, L.G. Haggmark: Nucl. Instrum. Methods174, 257 (1980)Google Scholar
  11. 11.
    R.S. Averback, P.R. Okamoto, A.C. Baily, B. Stritzker: Nucl. Instrum. Methods137/8, 556 (1985)Google Scholar
  12. 12.
    J.B. Gibson, A.N. Goland, M. Milgram, G.H. Vineyard: Phys. Rev.120, 1229 (1960)Google Scholar
  13. 13.
    M.W. Guinan, J.H. Kinney: J. Nucl. Mater.103/104 1319 (1981)Google Scholar
  14. 14.
    W.E. King, R. Benedek: J. Nucl. Mater.117, 26 (1983)Google Scholar
  15. 15.
    K.B. Winterbon:Ion Implantation Range and Energy Deposition Distributions, Vol.2 (Plenum, New York 1975)Google Scholar
  16. 16.
    F. Seitz, J.S. Koehler: InSolid State Physics 2, 305 (Academic, New York 1956)Google Scholar
  17. 17.
    D. Peak, R.S. Averback: Nucl. Instrum. Methods137/8, 561 (1985)Google Scholar
  18. 18.
    P. Sigmund, A. Gras-Marti: Nucl. Instrum. Methods182/183, 25 (1981)Google Scholar
  19. 19.
    F. Besenbacher, J. Bøttinger, S.K. Nielsen, H.J. Whitlow: Appl. Phys. A29, 141 (1982)Google Scholar
  20. 20.
    P. Lucasson: In “Fundamental of Radiation Damage in Metals”, ed. by M.T. Robinson, F.W. Young, Jr., Gatlinburg, Tenn., 1975, p. 42Google Scholar
  21. 21.
    K. Haga, A.C. Baily, W.E. King, K.L. Merkle, M. Meshii: In “7th Intern. Conf. of High Voltage Electron Microscopy”, ed. by R.M. Fisher, R. Gronsky, K.H. Westmacott (1983) p. 139Google Scholar
  22. 22.
    T.J. Black, M.L. Jenkins, M.A. Kirk: In: Proc. of EMAG 83, ed. by P. Doig, Inst. of Phys. Conf. Series No. 68, London (1984) p. 343Google Scholar
  23. 23.
    Dipankar Primanik, David N. Seidman: Nucl. Instrum. Methods209/210, 453 (1983); J. Appl. Phys.54, 6352 (1983)Google Scholar
  24. 24.
    See, e.g., R.W. Balluffi: J. Nucl. Mater.69/70, 240 (1978)Google Scholar
  25. 25.
    A.R. Miedema, F.R. de Boer, R. Boom: CALPHAD1, 341 (1977)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • R. S. Averback
    • 1
  • D. Peak
    • 1
  • L. J. Thompson
    • 1
  1. 1.Materials Science and Technology DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations