Acta Mechanica

, Volume 81, Issue 3–4, pp 125–142 | Cite as

Averaging using elliptic functions: approximation of limit cycles

  • V. T. Coppola
  • R. H. Rand
Contributed Papers

Summary

We apply the method of averaging to first order in the small parameter ε to the autonomous system
$$x'' + \alpha x + \beta x^3 + \varepsilon g\left( {x, x'} \right) = 0$$
where we do not consider β as small. This involves perturbing off of Jacobian elliptic functions, rather than off of trigonometric functions as is usually done. The resulting equations involve integrals of elliptic functions which are evaluated using a program written in the computer algebra system MACSYMA. The results are applied to the problem of approximating limit cycles in the above differential equation.

Keywords

Differential Equation Dynamical System Fluid Dynamics Small Parameter Transport Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Appl. Math. Sciences 42. New York: Springer-Verlag 1983.Google Scholar
  2. [2]
    Hagedorn, P.: Non-linear oscillations. New York: Oxford University Press 1982.Google Scholar
  3. [3]
    Kevorkian, J., Cole, J. D.: Perturbation methods in applied mathematics. Appl. Math. Sciences 34. New York: Springer-Verlag 1981.Google Scholar
  4. [4]
    Minorsky, N.: Nonlinear oscillations. New York: van Nostrand 1962.Google Scholar
  5. [5]
    Nayfeh, A.: Perturbation methods. New York: Wiley-Interscience 1973.Google Scholar
  6. [6]
    Nayfeh, A., Mook, D. T.: Nonlinear oscillations. New York: John Wiley and Sons 1979.Google Scholar
  7. [7]
    Rand, R. H., Armbruster, D.: Perturbation methods, bifurcation theory and computer algebra. Appl. Math. Sciences 65. New York: Springer-Verlag 1987.Google Scholar
  8. [8]
    Sanders, J. A., Verhulst, F.: Averaging methods in nonlinear dynamical systems. Appl. Math. Sciences 59. New York: Springer-Verlag 1985.Google Scholar
  9. [9]
    Stoker, J. J.: Nonlinear vibrations. New York: Wiley 1950.Google Scholar
  10. [10]
    Kuzmak, G. E.: Asymptotic solutions of nonlinear second order differential equations with variable coefficients. P. M. M. (English translation)23 (3), 515–526 (1959).Google Scholar
  11. [11]
    Garcia-Margallo, J., Bejarano, J.: Stability of limit cycles and bifurcations of generalized van der Pol oscillators, preprint.Google Scholar
  12. [12]
    Chirikov, B. V.: A universal instability of many dimensional oscillator systems. Phys. Reports52, 263–379 (1979).Google Scholar
  13. [13]
    Davis, H. T.: Introduction to nonlinear differential and integral equations. New York: Dover 1962.Google Scholar
  14. [14]
    Cap, F. F.: Averaging methods for the solution of non-linear differential equations with periodic non-harmonic solutions. Int. J. Nonlinear Mech.9, 441–450 (1973).Google Scholar
  15. [15]
    Pocobelli, G.: Electron motion in a slowly varying wave. Phys. Fluids24 (12), 2173–2176 (1981).Google Scholar
  16. [16]
    Greenspan, B., Holmes, P.: Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators. SIAM J. Math. Anal.15 (1), 69–97 (1983).Google Scholar
  17. [17]
    Garcia-Margallo, J., Bejarano, J.: A generalization of the method of harmonic balance. J. Sound Vib.116 (3), 591–595 (1987).Google Scholar
  18. [18]
    Yuste, S., Bejarano, J.: Construction of approximate analytical solutions to a new class of nonlinear oscillator equations. J. Sound Vib.110 (2), 347–350 (1986).Google Scholar
  19. [19]
    Byrd, P., Friedman, M.: Handbook of elliptic integrals for engineers and scientists. Berlin: Springer-Verlag 1954.Google Scholar
  20. [20]
    Coppola, V. T.: Averaging of strongly nonlinear oscillators using elliptic functions. PhD. disserdation, Ithaca N.Y.: Cornell University 1989.Google Scholar
  21. [21]
    Goldstein, H.: Classical mechanics, 2nd ed., Reading: Addison-Wesley 1980.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • V. T. Coppola
    • 1
  • R. H. Rand
    • 1
  1. 1.Department of Theoretical and Applied MechanicsCornell UniversityIthacaNYUSA

Personalised recommendations