Acta Mechanica

, Volume 57, Issue 3–4, pp 215–231 | Cite as

Unsteady nonsimilar compressible laminar two-dimensional and axisymmetric boundary-layer flows

  • R. Vasantha
  • G. Nath


Unsteady nonsimilar laminar compressibletwo-dimensional and axisymmetric boundarylayer flows have been studied when external velocity varies arbitrarily with time and the flow is nonhomentropic. The governing nonlinear partial differential equations with three independent variables have been solved using an implicit finite difference scheme with quasilinearization technique from the origin to the point of zero skin-friction. The results have been obtained for (i) an accelerating stream and (ii) a fluctuating stream. The skin friction responds to the fluctuations in the free stream more compared to the heat transfer. It is observed that Mach number and hot wall cause the point of zero skin friction to occur earlier whereas cold wall delays it.


Heat Transfer Partial Differential Equation Fluid Dynamics Finite Difference Mach Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Devey, C. F., Gross, J. F.: Exact solutions of the laminar boundary-layer equations. Advances in Heat Transfer, Vol. 4, p. 317, New York: Academic Press 1967.Google Scholar
  2. [2]
    Sparrow, E. M., Quack, H., Boerner, E. J.: Local nonsimilar boundary layer solutions. AIAA J.8, 1936–1942 (1970).Google Scholar
  3. [3]
    Sparrow, E. M., Yu, H. S.: Local nonsimilarity thermal boundary-layer solutions. Trans. ASME, J. of Heat Transfer.93, 328–334 (1971).Google Scholar
  4. [4]
    Kao, T., Elrod, H. G.: Laminar shear stress pattern in nonsimilar incompressible boundary-layers. AIAA J.12, 1401–1408 (1974).Google Scholar
  5. [5]
    Kao, T., Elrod, H. G.: Rapid calculation of heat-transfer in nonsimilar laminar incompressible boundary-layers. AIAA J.14, 1746–1751 (1976).Google Scholar
  6. [6]
    Jaffe, N. A., Smith, A. M. O.: Calculation of laminar boundary layers by means of a differential-difference method. Progress in aerospace sciences (Ed. Kuchemann, D.) Vol. 12, p. 49, Oxford: Pergamon Press 1971.Google Scholar
  7. [7]
    Terrill, R. M.: Laminar boundary-layer flow near separation with or without suction. Phil. Trans. Roy. Soc. LondonA 253, 55–100 (1960).Google Scholar
  8. [8]
    Venkatachala, B. J., Nath, G.: Nonsimilar laminar incompressible boundary layers with vectored mass transfer. Proc. Ind. Acad. Sci. (Eng. Sci.)3, 129–142 (1980).Google Scholar
  9. [9]
    Lighthill, M. J.: The response of laminar skin-friction and heat-transfer to fluctuations in the stream velocity. Proc. Roy. Soc. LondonA 224, 1–23 (1954).Google Scholar
  10. [10]
    Hall, M. G.: The boundary-layer over an impulsively started flat plate. Proc. Roy. Soc. LondonA 310, 401–414 (1969).Google Scholar
  11. [11]
    Dennis, S. C. R.: The motion of a viscous fluid past an impulsively started semi-infinite flat plate. J. Inst. Math. Appl.10, 105–117 (1972).Google Scholar
  12. [12]
    Watkins, C. B.: Unsteady heat transfer in impulsive Falkner-Skan Flows. Int. J. Heat Mass Transfer19, 395–403 (1976).Google Scholar
  13. [13]
    Cebeci, T.: Calculation of unsteady two-dimensional laminar and turbulent boundary layers with fluctuations in external velocity. Proc. Roy. Soc. LondonA 355, 225–238 (1977).Google Scholar
  14. [14]
    Cebeci, T.: The laminar boudary layer on a circular cylinder started impulsively from rest. J. Comput. Phys.31, 153–172 (1979).Google Scholar
  15. [15]
    Williams, J. C., Rhyne, T. B.: Boundary layer development on a wedge impulsively set into motion. SIAM J. Appl. Math.38, 215–234 (1980).Google Scholar
  16. [16]
    Williams, J. C.: Flow development in the vicinity of the sharp trailing edge on bodies impulsively set into motion. J. Fluid Mech.115, 27–37 (1982).Google Scholar
  17. [17]
    Patel, V. A.: Flow around the impulsively started elliptic cylinder at various angles of attack. Computers and Fluids9, 435–462 (1982).Google Scholar
  18. [18]
    Williams, J. C., Stewartson, K.: Flow development in the vicinity of the sharp trailing edge on bodies impulsively set into motion. Part 2. J. Fluid Mech.131, 177–194 (1983).Google Scholar
  19. [19]
    Surma Devi, C. D., Nath. G.: Unsteady nonsimilar laminar boundary-layer flows with heat and mass transfer. Acta Technica Csav.28, 225–239 (1983).Google Scholar
  20. [20]
    Childs, E. P., Mayle, R. E.: Heat transfer on a rotationally oscillating cylinder in cross flow. Int. J. Heat Mass Transfer27, 85–94 (1984).Google Scholar
  21. [21]
    Hancock, G. I.: Unsteady boundary layers. IMA J. Appl. Math.32, 175–185 (1984).Google Scholar
  22. [22]
    Ece, M. C., Walker, J. D. A., Doligalski, T. L.: The boundary layer on an impulsively started rotating and translating cylinder. Phys. Fluids27, 1077–1089 (1984).Google Scholar
  23. [23]
    Riley, N.: Unsteady laminar boundary layers. SIAM Review17, 274–297 (1975).Google Scholar
  24. [24]
    McCrosky, W. J.: Some current research in unsteady fluid dynamics. J. Fluids Eng.99, 8–39 (1977).Google Scholar
  25. [25]
    Telionis, D. P.: Review-unsteady boundary layers separated and attached. J. Fluids Eng.101, 29–44 (1979).Google Scholar
  26. [26]
    Telionis, D. P.: Unsteady viscous flows. New York: Springer 1981.Google Scholar
  27. [27]
    Davies, T., Walker, G.: On solution of the compressible laminar boundary-layer equations and their behaviour near separation. J. Fluid Mech.80, 279–292 (1977).Google Scholar
  28. [28]
    Krishnaswamy, R.: A numerical study of laminar compressible boundary-layer problems. Ph. D. Thesis. Indian Institute of Sci., India, May 1980.Google Scholar
  29. [29]
    Inouge, K., Tate, A.: Finite-difference version of quasilinearization applied to boundary-layer equations. AIAA J.12, 558–560 (1974).Google Scholar
  30. [30]
    Pai, S. I.: Introduction to the theory of compressible flow, p. 119. New York: D. Van Nostrand Company, Inc. 1958.Google Scholar
  31. [31]
    Carrier, C. F., Pearson, C. E.: Partial differential equations theory and technique, p. 136. New York: Academic Press 1976.Google Scholar
  32. [32]
    Schlichting, H.: Boundary-layer theory, p. 401. New York: McGraw-Hill 1968.Google Scholar
  33. [33]
    Sears, W. R., Telionis, D. P.: Boundary layer separation in unsteady flow. SIAM J. Appl. Math.28, 215–235 (1975).Google Scholar
  34. [34]
    Williams, J. C.: Incompressible laminar boundary layer separation. Ann. Rev. Fluid Mech.9, 113–144 (1977).Google Scholar
  35. [35]
    Van Dommelen, L. L., Shen, S. F.: An unsteady interactive separation process. AIAA J.21, 358–362 (1983).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. Vasantha
    • 1
  • G. Nath
    • 1
  1. 1.Department of Applied MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations