Acta Mechanica

, Volume 65, Issue 1–4, pp 63–80 | Cite as

A study of conservation laws of dynamical systems by means of the differential variational principles of Jourdain and Gauss

  • B. Vujanovic
Contributed Papers


In this report we consider the possibility of using the differential variational principles of Jourdain and Gauss as a starting point for the study of conservation laws of holonomic conservative and nonconservative dynamical systems with a finite number of degrees of freedom. We demonstrate that this approach has the same status as the method based on the D'Alembert's differential variational principle developed in a previous paper.


Dynamical System Fluid Dynamics Finite Number Variational Principle Transport Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wigner, E. P.: Symmetries and reflections-scientific essays. Bloomington-London: Indiana University Press 1970.Google Scholar
  2. [2]
    Noether, E.: Invariante Variationsprobleme. Nachr. kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. pp. 235–257, 1918.Google Scholar
  3. [3]
    Djukic, Dj. S., Vujanovic, B.: Noethers's theory in classical nonconservative mechanics. Acta Mechanica23, 17–27 (1975).Google Scholar
  4. [4]
    Vujanovic, B.: Conservation laws of dynamical systems via D'Alembert's principle. Int. J. Non-Linear Mechanics13, 185–197 (1978).Google Scholar
  5. [5]
    Jourdain, Ph. E. B.: Note on a analogue of Gauss' principle. Quaterly Journal of Pure and Applied Mathematics.39, 251 (1909).Google Scholar
  6. [6]
    Pars, L. A.: A treatise on analytical dynamics. London: Heinemann 1968.Google Scholar
  7. [7]
    Vujanovic, B.: A group-variational procedure for finding first integrals of dynamical systems. Int. J. Non-Linear Mechanics5, 269–278 (1970).Google Scholar
  8. [8]
    Sarlet, W., Cantrijn, F.: Generalization of Noether's theorem in classical mechanics. SIAM Review23 (4), 467–494 (October 1981).Google Scholar
  9. [9]
    Vujičié, V.: Une manière d'obtenir les équations du mouvement à partir du principe de Gauss en cordons généralisés. Matematićki Vesnik1 (16), 215–220 (1964).Google Scholar
  10. [10]
    Djukic, Dj. S., Sutela, T.: Integrating factors and conservation laws of nonconservative dynamical systems. Int. J. Non-Linear Mechanics19 (4), 331–339 (1984).Google Scholar
  11. [11]
    Vujanovic, B.: A geometrical approach to the conservation laws of non-conservative dynamical systems. Tensor (N.S.)32 (3), 357–365 (1978).Google Scholar
  12. [12]
    Gettys, W. E., Ray, J. R., Breitenberger, E.: Bohlin's and other integrals for the damped harmonic oscillator. Am. J. Phys.49 (2), 162–164 (Feb. 1981).Google Scholar
  13. [13]
    Bahar, L. Y., Kwatny, H. G.: Some remarks on the derivability of linear nonconservative systems from a Lagrangian. Hadronic Journal3 (4), 1264–1280 (1980).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • B. Vujanovic
    • 1
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadYugoslavia

Personalised recommendations