Advertisement

Acta Mechanica

, Volume 42, Issue 1–2, pp 123–134 | Cite as

Wave propagation in a thin walled fluid filled viscoelastic tube

  • T. B. Moodie
  • J. B. Haddow
  • R. J. Tait
Contributed Papers

Summary

The dynamic response of a thin walled, fluid filled, viscoelastic tube, subjected to the sudden release of a uniformly distributed circumferential line loading, is analyzed. It is assumed that the fluid is incompressible and inviscid and that the behavior of the tube material is represented by the standard viscoelastic model. A simple approximate shell theory, for tethered tubes, is employed. Results, for parameters appropriate to biological applications, are obtained by numerical inversion of Fourier transforms.

Keywords

Fourier Dynamical System Fourier Transform Fluid Dynamics Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Tait, R. J., Moodie, T. B., Haddow, J. B.: Wave propagation in a fluid filled elastic tube. Acta Mechanica (in press).Google Scholar
  2. [2]
    Skalak, R.: Wave propagation in blood flow in biomechanics. Symp. Appl. Mech. Div. ASME (Fung, Y. C., ed.), p. 20. 1966.Google Scholar
  3. [3]
    Lamb, H.: On the velocity of sound in a tube, as affected by the elasticity of the walls. Manchester Lit. Phil. Soc. Mem Proc.42, 1 (1898).Google Scholar
  4. [4]
    Witzig, K.: Über erzwungene Wellenbewegungen zäher, inkompressibler Flüssigkeiten in elastischen Röhren. Inaugural-Dissertation, Universität Bern, 1914.Google Scholar
  5. [5]
    Klip, W.: Velocity and damping of the pulse wave. Martinus Nijhoff 1962.Google Scholar
  6. [6]
    Rubinow, S. I., Keller, J. B.: Hydrodynamic aspects of the circulatory system. Hemorheology Proc. 1st Int. Conf., Univ. of Iceland, 1966 (Copley, A. L., ed.). Pergamon 1968.Google Scholar
  7. [7]
    Rubinow, S. I., Keller, J. B.: Wave propagation in a fluid-filled tube. J. Acoust. Soc. Am.50, 198 (1971).Google Scholar
  8. [8]
    Rubinow, S. I., Keller, J. B.: Wave propagation in viscoelastic tube containing a viscous fluid. J. Fluid Mech.88, 181 (1978).Google Scholar
  9. [9]
    Anliker, M., Histand, M. B., Ogden, E.: Dispersion and attenuation of small artificial pressure waves in the canine aorta. Circulation Res.539, 23 (1968).Google Scholar
  10. [10]
    Hetenyi, M.: Beams on elastic foundation. University of Michigan Press 1947.Google Scholar
  11. [11]
    Flügge, W.: Viscoelasticity, 2nd ed. Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  12. [12]
    Brigham, E. O.: The fast fourier transform. Prentice-Hall 1974.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • T. B. Moodie
    • 1
  • J. B. Haddow
    • 2
  • R. J. Tait
    • 1
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada
  2. 2.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations