Mathematische Zeitschrift

, Volume 183, Issue 3, pp 399–406 | Cite as

Holomorphic families of Dirac operators

  • Tosio Kato


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arai, M.: On essential selfadjointness, distinguished selfadjoint extension and essential spectrum of Dirac operators with matrix valued potentials. Publ. Res. Inst. Math. Sci. (to appear)Google Scholar
  2. 2.
    Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups, Revised Edition. Providence: Amer. Math. Soc. 1957Google Scholar
  3. 3.
    Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann.162, 258–279 (1966)Google Scholar
  4. 4.
    Kato, T.: Perturbation Theory for Linear Operators, 2nd ed. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  5. 5.
    Klaus, M., Wüst, R.: Characterization and uniqueness of distinguished self-adjoint extensions of Dirac operators. Comm. Math. Phys.64, 171–176 (1979)Google Scholar
  6. 6.
    Klaus, M., Wüst, R.: Spectral properties of Dirac operators with singular potentials. J. Math. Anal. Appl.72, 206–214 (1979)Google Scholar
  7. 7.
    Nenciu, G.: Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Comm. Math. Phys.48, 235–247 (1976)Google Scholar
  8. 8.
    Schmincke, U.-W.: Distinguished selfadjoint extensions of Dirac operators. Math. Z.129, 335–349 (1972)Google Scholar
  9. 9.
    Wüst, R.: Distinguished self-adjoint extensions of Dirac operators constructed by means of cutoff potentials. Math. Z.141, 93–98 (1975)Google Scholar
  10. 10.
    Wüst, R.: Dirac operators with strongly singular potentials. Math. Z.151, 259–271 (1977)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Tosio Kato
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations