Mathematische Zeitschrift

, Volume 183, Issue 3, pp 311–341 | Cite as

Quasilinear elliptic-parabolic differential equations

  • Hans Wilhelm Alt
  • Stephan Luckhaus


Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexiades, V., Cannon, J.R.: Free boundary problems in solidification of alloys. SIAM J. Math. Anal.11, 254–264 (1980)Google Scholar
  2. 2.
    Alt, H.W., DiBenedetto, E.: The flow of water and oil through porous media. PreprintGoogle Scholar
  3. 3.
    Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Preprint 136, SFB 123, Heidelberg (1982)Google Scholar
  4. 4.
    Alt, H.W., Luckhaus, S., Visintin, A.: Nonlinear filtration equation and the dam problem. Ann. Mat. Pura Appl. (to appear)Google Scholar
  5. 5.
    Aronson, D.G.: Regularity properties of flows through porous media: The interface Arch. Rational Mech. Anal.37, 1–10 (1970)Google Scholar
  6. 6.
    Attouch, H., Damlamian, A.: Problèmes d'évolution dans les Hilberts et applications. J. Math. Pures Appl.54, 53–74 (1975).Google Scholar
  7. 7.
    Benilan, P.: Equations d'évolution dans un espace de Banach quelconque et applications. Thèse, Univ. Paris XI, Orsay 1972Google Scholar
  8. 8.
    Benilan, P.: Operateursm-accretifs hémicontinues dans un espace de Banach quelconque. C.R. Acad. Sci. Paris Sér. A278, 1029–1032 (1974)Google Scholar
  9. 9.
    Benilan, P.: Existence des solutions fortes pour l'equation des milieux poreux. C.R. Acad. Sci. Paris Sér A285, 1029–1031 (1977).Google Scholar
  10. 10.
    Benilan, P., Brezis, H., Crandall, M.G.: A semilinear equation inl 1(ℝN). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)2, 523–555 (1975)Google Scholar
  11. 11.
    Brezis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Amsterdam: North-Holland 1973Google Scholar
  12. 12.
    Cannon, J.R., DiBenedetto, E.: On the existence of weak solutions to ann-dimensional Stefan problem with nonlinear boundary conditions. SIAM J. Math. Anal.11, 632–645 (1980)Google Scholar
  13. 13.
    Crandall, M.G.: An introduction to evolution governed by accretive operators. In: Dynamical Systems. Proceedings of an International Symposium (Brown University, 1974). New York-San Francisco-London: Academic Press 1975Google Scholar
  14. 14.
    Damlamian, A., Kenmochi, N.: Le problème de Stefan avec conditions latérales variables. Hiroshima Math. J.10, 271–293 (1980).Google Scholar
  15. 15.
    van Duyn, C.J., Peletier, L.A.: Non-stationary filtration in partially saturated porous media. Preprint Amsterdam Math. Centrum (1979)Google Scholar
  16. 16.
    Gilding, B.H.: A nonlinear degenerate parabolic equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)4, 393–432 (1977)Google Scholar
  17. 17.
    Hornung, U.: Die longitudinale Linienmethode für die ausgeartete nichtlineare Fokker-Planksche Differentialgleiching. Habilitationsschrift, Münster 1978Google Scholar
  18. 18.
    Kröner, D., Luckhaus, S.: Flow of oil and water in a porous medium. J. Differential Equations (to appear)Google Scholar
  19. 19.
    Niezgódka, M., Pawlow, I.: A generalized Stefan problem in several space variables. Appl. Math. Optim.9, 193–224 (1983).Google Scholar
  20. 20.
    Oleinik, O.A., Kalashnikov, A.S., Yui-Lin, Chzou: The Cauchy, problem and boundary value problems for equations of the type of nonstationary filtration. Izv. Akad. Nauk SSSR Ser. Mat.22, 667–704 (1958) [Russian]Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Hans Wilhelm Alt
    • 1
  • Stephan Luckhaus
    • 2
  1. 1.Institut für Angewandte Mathematik der Universität BonnBonnFederal Republic of Germany
  2. 2.Sonderforschungsbereich 123Universität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations