Mathematische Zeitschrift

, Volume 183, Issue 3, pp 311–341

Quasilinear elliptic-parabolic differential equations

  • Hans Wilhelm Alt
  • Stephan Luckhaus
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexiades, V., Cannon, J.R.: Free boundary problems in solidification of alloys. SIAM J. Math. Anal.11, 254–264 (1980)Google Scholar
  2. 2.
    Alt, H.W., DiBenedetto, E.: The flow of water and oil through porous media. PreprintGoogle Scholar
  3. 3.
    Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Preprint 136, SFB 123, Heidelberg (1982)Google Scholar
  4. 4.
    Alt, H.W., Luckhaus, S., Visintin, A.: Nonlinear filtration equation and the dam problem. Ann. Mat. Pura Appl. (to appear)Google Scholar
  5. 5.
    Aronson, D.G.: Regularity properties of flows through porous media: The interface Arch. Rational Mech. Anal.37, 1–10 (1970)Google Scholar
  6. 6.
    Attouch, H., Damlamian, A.: Problèmes d'évolution dans les Hilberts et applications. J. Math. Pures Appl.54, 53–74 (1975).Google Scholar
  7. 7.
    Benilan, P.: Equations d'évolution dans un espace de Banach quelconque et applications. Thèse, Univ. Paris XI, Orsay 1972Google Scholar
  8. 8.
    Benilan, P.: Operateursm-accretifs hémicontinues dans un espace de Banach quelconque. C.R. Acad. Sci. Paris Sér. A278, 1029–1032 (1974)Google Scholar
  9. 9.
    Benilan, P.: Existence des solutions fortes pour l'equation des milieux poreux. C.R. Acad. Sci. Paris Sér A285, 1029–1031 (1977).Google Scholar
  10. 10.
    Benilan, P., Brezis, H., Crandall, M.G.: A semilinear equation inl 1(ℝN). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)2, 523–555 (1975)Google Scholar
  11. 11.
    Brezis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Amsterdam: North-Holland 1973Google Scholar
  12. 12.
    Cannon, J.R., DiBenedetto, E.: On the existence of weak solutions to ann-dimensional Stefan problem with nonlinear boundary conditions. SIAM J. Math. Anal.11, 632–645 (1980)Google Scholar
  13. 13.
    Crandall, M.G.: An introduction to evolution governed by accretive operators. In: Dynamical Systems. Proceedings of an International Symposium (Brown University, 1974). New York-San Francisco-London: Academic Press 1975Google Scholar
  14. 14.
    Damlamian, A., Kenmochi, N.: Le problème de Stefan avec conditions latérales variables. Hiroshima Math. J.10, 271–293 (1980).Google Scholar
  15. 15.
    van Duyn, C.J., Peletier, L.A.: Non-stationary filtration in partially saturated porous media. Preprint Amsterdam Math. Centrum (1979)Google Scholar
  16. 16.
    Gilding, B.H.: A nonlinear degenerate parabolic equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)4, 393–432 (1977)Google Scholar
  17. 17.
    Hornung, U.: Die longitudinale Linienmethode für die ausgeartete nichtlineare Fokker-Planksche Differentialgleiching. Habilitationsschrift, Münster 1978Google Scholar
  18. 18.
    Kröner, D., Luckhaus, S.: Flow of oil and water in a porous medium. J. Differential Equations (to appear)Google Scholar
  19. 19.
    Niezgódka, M., Pawlow, I.: A generalized Stefan problem in several space variables. Appl. Math. Optim.9, 193–224 (1983).Google Scholar
  20. 20.
    Oleinik, O.A., Kalashnikov, A.S., Yui-Lin, Chzou: The Cauchy, problem and boundary value problems for equations of the type of nonstationary filtration. Izv. Akad. Nauk SSSR Ser. Mat.22, 667–704 (1958) [Russian]Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Hans Wilhelm Alt
    • 1
  • Stephan Luckhaus
    • 2
  1. 1.Institut für Angewandte Mathematik der Universität BonnBonnFederal Republic of Germany
  2. 2.Sonderforschungsbereich 123Universität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations