Advertisement

Acta Mechanica

, Volume 155, Issue 3–4, pp 125–135 | Cite as

On the gas loss from ventilated supercavities

  • J. H. Spurk
Original Papers

Summary

A theory for the gas loss in high Froude number flows is constructed on the assumption that the gas loss in ventilated supercavities is caused by entrainment of the gas into the boundary layers on the walls of the cavity which act as moving foils. The theory is in good agreement with experiments for both turbulent and laminar flow.

Keywords

Boundary Layer Dynamical System Fluid Dynamics Laminar Flow Transport Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cox, P. N., Clayden, W. A.: Air entrainment at the rear of a steady cavity. In: Proc. Symposium, Nat. Phys. Lab., London 1955.Google Scholar
  2. [2]
    Epshtein, L. A.: Metody teorii razmernostey i podobiya v zadachakh gidromekhaniki sudov. Leningrad Sudostroyeniya 1970. (Translation by Department of the Navy, Translation Division: Methods of the dimensional analysis and similarity theory in problems of ship hydrodynamics, pp. 134–145.)Google Scholar
  3. [3]
    Logvinovich, G. V.: Hydrodynamics of free-boundary flows, pp. 129–133. (Translated from Russian, Israel Program for Scientific Translation Jerusalem, Kiev: Izdaltel'stvo Naukova Dumka, 1969.)Google Scholar
  4. [4]
    Semenenko, V. N.: Artificial supercavitation. Physics and calculation. In: RTO AVT/VKI Special Course “Supercavitating Flows” (Tulin, M. P., Masure, B., Van den Braembussche, R. A., eds.), February 2001.Google Scholar
  5. [5]
    Bürger, K.-H.: Private communication (April 2001).Google Scholar
  6. [6]
    Semenenko, V. N.: Dynamic processes of supercavitation and computer simulation. In: RTO AVT/VKI Special Course “Supercavitating Flows” (Tulin, M. P., Masure, B., Van den Braembussche, R. A., eds.) February 2001.Google Scholar
  7. [7]
    Garabedian, P. R.: Calculation of axially symetric cavities and jets. Pacific J. Math.6, 611–684 (1956).Google Scholar
  8. [8]
    Betz, A., Petersohn, E.: Anwendungen der Theorie freier Strahlen. Ing. Archiv.2, 190–211 (1932).Google Scholar
  9. [9]
    Birkhoff, G., Zarantonello, E. H.: Jets, wakes and cavities. New York: Academic Press 1957, pp. 8–9, pp. 251–257.Google Scholar
  10. [10]
    Sakiades, B. C.: Boundary layer on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow. A. I. Ch. E. Journal7, 26–28 (1961).Google Scholar
  11. [11]
    Sakiades, B. C.: Boundary layer on continuous solid surfaces: II. The boundary layer on a continuous flat surface. A. I. Ch. E. Journal7, 221–225 (1961).Google Scholar
  12. [12]
    Sakiades, B. C.: Boundary layer on continuous solid surfaces: III. The boundary layer on a continuous cylindrical surface. A. I. Ch. E. Journal7, 467–472 (1961).Google Scholar
  13. [13]
    Simon, V.: Private communication (1993).Google Scholar
  14. [14]
    Spurk, J. H.: Fluid mechanics, problems and solutions. Berlin: Springer 1997, pp. 600–601.Google Scholar
  15. [15]
    Spurk, J. H.: Fluid mechanics. Berlin: Springer 1997, pp. 447–448.Google Scholar
  16. [16]
    Schlichting, H.: Grenzschicht-Theorie. Fünfte Aufl., Karlsruhe: Verlag G. Braun 1964, pp. 618–644.Google Scholar
  17. [17]
    Schubauer, G. B., Tchen, C. M.: Turbulent flow. Princeton Aeronautical Paperbacks No. 9. Princeton, NJ: Princeton University Press 1961, pp. 47–84.Google Scholar
  18. [18]
    White, C. R.: Viscous fluid flow. New York: McGraw-Hill 1974.Google Scholar
  19. [19]
    Savchenko, Y. N.: Investigation of high-speed supercavitating underwater motion of bodies. In: High-speed motion in water. AGARD Report827, 20-1–20-12 (1998).Google Scholar
  20. [20]
    May, A.: Water entry and the cavity running behavior of missile, chapter 2: The forces acting on cavity-running missiles. NAVSEA Hydroballistic Advisory Committee Silver Spring, Maryland 1975. (NTIS US Department of Commerce.)Google Scholar
  21. [21]
    Birkhoff, G.: Hydrodynamics, Princeton, NJ: Princeton University Press 1960, pp. 115–116.Google Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • J. H. Spurk
    • 1
  1. 1.Bad KönigGermany

Personalised recommendations