Acta Mechanica

, Volume 84, Issue 1–4, pp 191–199 | Cite as

Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing

  • I. A. Hassanien
  • R. S. R. Gorla
Contributed Papers

Summary

The heat transfer from a stretching sheet to a micropolar fluid is analyzed using the theory of micropolar fluids formulated by Eringen. The governing equations for momentum, angular momentum and energy have been solved numerically. Numerical data for the friction factor and Nusselt number has been tabulated for a range of Prandtl numbers. Surface mass transfer rate and the power law constant for the wall temperature have considerable influence on the heat transfer mechanism.

Nomenclature

Ec

Eckert number

f

dimensionless velocity function

g

dimensionless microrotation

G, N1

dimensionless material parameters

j

microinertia per unit mass

K

material coefficient

N

angular velocity

Nu

Nusselt number

Pr

Prandtl number

Re

Reynolds number

T

temperature

u

surface velocity

v

velocity iny-direction

Us

surface velocity

x

distance along the surface

y

distance normal to the surface

μ

viscosity coefficient

ϱ

density of the fluid

σ

dimensionless temperature

γ

power law exponent

Subscripts

ω

conditions at the surface

conditions far away from the surface

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hoyt, J. W., Fabula, A. G.: The effect of additives on fluid friction. U.S. Naval Ordinance Test Station Report (1964).Google Scholar
  2. [2]
    Vogel, W. M., Patterson, A. M.: An experimental investigation of additives injected into the boundary layer of an underwater body. Pacific Naval Lab. of the Defense Res. Board of Canada, Report 64-2 (1964).Google Scholar
  3. [3]
    Eringen, A. C.: Theory of micropolar fluids. J. Math. Mech.16, 1 (1966).Google Scholar
  4. [4]
    Eringen, A. C.: Theory of thermomicrofluids. J. Math. Anal. Appl.38, 480 (1972).Google Scholar
  5. [5]
    Sakiadis, B. C.: Boundary layer behavior on continuous solid surface; the boundary layer on a continuous flat surface. Am. Inst. Chem. Engrs J.7, 221 (1961).Google Scholar
  6. [6]
    Soundalgekar, V. M., Takhar, H. S.: Boundary layer flow of a micropolar fluid on a continuous moving plate. Int. J. Engng Sci.21, 961 (1983).Google Scholar
  7. [7]
    Gorla, R. S. R., Ameri A.: Boundary layer flow of a micropolar fluid on a continuous moving cylinder. Acta Mech.53, 203 (1985).Google Scholar
  8. [8]
    Gorla, R. S. R.: Combined forced and free convection in the boundary layer flow of a micropolar fluid on a continuous moving vertical cylinder. Int. J. Engng Sci.27, 77 (1989).Google Scholar
  9. [9]
    Crane, L. J.: Heat transfer on continuous solid surfaces. J. Appl. Math. Phys.21, 645 (1970).Google Scholar
  10. [10]
    Gupta, P. S., Gupta, A. S.: Heat and mass transfer on a stretching sheet with suction and blowing. Can. J. Chem. Engng.55, 744 (1977).Google Scholar
  11. [11]
    Dutta, B. K., Roy, P., Gupta, A. S.: Heat transfer on stretching sheet. Int. Commun. Heat Mass Transfer12, 89 (1985).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • I. A. Hassanien
    • 1
  • R. S. R. Gorla
    • 1
  1. 1.Department of Mechanical EngineeringCleveland State UniversityClevelandUSA

Personalised recommendations