Acta Mechanica

, Volume 86, Issue 1–4, pp 201–223 | Cite as

The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis

  • S. B. Savage
  • K. Hutter
Contributed Papers


This paper describes a model to predict the flow of an initially stationary mass of cohesion-less granular material down rough curved beds. This work is of interest in connection with the motion of rock and ice avalanches and dense flow snow avalanches. The constitutive behaviour of the material making up the pile is assumed to be described by a Mohr-Coulomb criterion while the bed boundary condition is treated by a similar Coulomb-type basal friction law assumption. By depth averaging the incompressible conservation of mass and linear momentum equations that are written in terms of a curvilinear coordinate system aligned with the curved bed, we obtain evolution equations for the depthh and the depth averaged velocityū. Three characteristic length scales are defined for use in the non-dimensionalization and scaling of the governing equations. These are a characteristic avalanche lengthL, a characteristic heightH, and a characteristic bed radius of curvatureR. Three independent parameters emerge in the non-dimensionalized equations of motion. One, which is the aspect ratio ε-H/L, is taken to be small. By choosing different orderings for the other two, the tangent of the bed friction angle δ and the characteristic non-dimensional curvature λ=L/R, we can obtain different sets of equations of motion which appropriately display the desired importance of bed friction and bed curvature effects. The equations, correct to order ε for moderate curvature, are discretized in the form of a Lagrangian-type finite difference representation which proved to be successful in the earlier studies of Savage and Hutter [24] for granular flow down rough plane surfaces. Laboratory experiments were performed with plastic particles flowing down a chute having a bed made up of a straight, inclined portion, a curved part and a horizontal portion. Numerical solutions are presented for conditions corresponding to the laboratory experiments. It is found that the predicted temporal-evolutions of the rear and front of the pile of granular material as well as the shape of the pile agree quite well with the laboratory experiments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Voellmy, A.: Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung73, 159–162, 212–217, 246–249, 280–285 (1955).Google Scholar
  2. [2]
    Salm, B.: On nonuniform steady flow of avalanching snow. IUGG/IAHS General Assembly Bern, Switzerland. IAHS Publ.79, 19–29 (1968).Google Scholar
  3. [3]
    Perla, R., Martinelli, M.: Avalanche handbook. U.S. Department of Agriculture Forest Service, Agriculture handbook489, 1978.Google Scholar
  4. [4]
    Perla, I. P., Cheng, T. T., McClung, D. M.: A two-parameter model of snow avalanche motion. J. Glaciology26 (94), 197–207 (1980).Google Scholar
  5. [5]
    Beghin, P., Hopfinger, E. J., Britter, R.: Gravitational convection from instantaneous sources on inclined boundaries. J. Fluid Mech.107, 407–422 (1981).Google Scholar
  6. [6]
    Tochon-Danguy, J.-C.: Etude des courants de gravitè sur forte pente avec application aux avalanches poudreuses. Thèse Grenoble, 1977.Google Scholar
  7. [7]
    Hopfinger, E.: Snow avalanche motion and related phenomena. Ann. Rev. Fluid Mech.15, 47–76 (1983).Google Scholar
  8. [8]
    Scheiwiller, T.: Dynamics of powder snow avalanches. Mitteilung No. 81 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH, 1986.Google Scholar
  9. [9]
    Scheiwiller, T., Hutter, K., Hermann, F.: Dynamics of powder snow avalanches. Annales Geophysicae5B, 569–588 (1987).Google Scholar
  10. [10]
    Tesche, T. W.: A three dimensional dynamic model of turbulent avalanche flow. Proc. Int. Snow Science Workshop, Lake Tahoe California 1–27, 1986.Google Scholar
  11. [11]
    Erismann, T.: Flowing, rolling, bouncing, sliding: synopsis of basic mechanisms. Acta Mechanica64, 101–110 (1986).Google Scholar
  12. [12]
    Goguel, J.: Scale dependent rockslide mechanisms. In: Rockslides and avalanches, vol. 1, pp. 167–180. (Voight, B., ed.). Elsevier 1978.Google Scholar
  13. [13]
    Hsü, K., Heim, A.: Observations on landslides and relevance to modern interpretations. In: Rockslides and avalanches, vol. 1, pp. 69–93. (Voight, B., ed.), Elsevier 1978.Google Scholar
  14. [14]
    Kent, P. E.: The transport mechanism in catastrophic rockfalls. J. Geol.74, 79–83 (1965).Google Scholar
  15. [15]
    Shreve, R. L.: Sherman landslide, Alaska. Science154, 1639–1643 (1966).Google Scholar
  16. [16]
    Jenkins, J. T., Savage, S. B.: A theory for the rapid flow of identical, smooth, nearly elastic particles. J. Fluid Mech.130, 186–202 (1983).Google Scholar
  17. [17]
    Haff, P. K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech.134, 401–430 (1983).Google Scholar
  18. [18]
    Lun, C. K. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech.140, 223–256 (1984).Google Scholar
  19. [19]
    Jenkins, J. T., Richman, M. W.: Grad's 13-moment system for a dense gas of inelastic spheres. Arch. Rat. Mech. Anal.87, 355–377 (1985).Google Scholar
  20. [20]
    Campbell, C. S., Brennen, C. E.: Computer simulation of granular shear flows. J. Fluid Mech.151, 167–188 (1985).Google Scholar
  21. [21]
    Campbell, C. S., Gong, A.: The stress tensor in a two-dimensional granular shear flow. J. Fluid Mech.164, 107–125 (1986).Google Scholar
  22. [22]
    Walton, O. R., Braun, R. L.: Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mechanica63, 73–86 (1986).Google Scholar
  23. [23]
    Hopkins, M., Shen, H.: A Monte-Carlo simulation of a rapid simple shear flow of granular materials. U.S. — Japan Seminar on Micromechanics of Granular Materials, Sendai, Japan, October 26–30 (1987) pp. 313–331.Google Scholar
  24. [24]
    Savage, S. B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech.199, 177–215 (1989).Google Scholar
  25. [25]
    Hutter, K., Plüss, Ch., Savage, S. B.: Dynamics of avalanches of granular materials from initiation to runout. Part II. Laboratory experiments. (in preparation).Google Scholar
  26. [26]
    Savage, S. B., Jeffrey, D. J.: The stress tensor in a granular flow at high shear rates. J. Fluid Mech.110, 255–272 (1981).Google Scholar
  27. [27]
    Savage, S. B.: The mechanics of rapid granular flows. Advances in Applied Mechanics24, pp 289–366. (Wu, T. Y., Hutchinson, J., eds.). Academic 1984.Google Scholar
  28. [28]
    Savage, S. B.: Granular flows down rough inclines — review and extension. Mech. of granular materials: new models and constitutive relations pp. 261–282 (Jenkins, J. T., Satake, M., eds.). Elsevier 1983.Google Scholar
  29. [29]
    Shen, H.: Constitutive relationships for fluid-solid mixtures. Ph. D. thesis, Clarkson Coll. of Tech. 1982.Google Scholar
  30. [30]
    Plüss, Ch.: Experiments on granular avalanches. Diplomarbeit, Abt. X, Eidg. Techn. Hochschule, Zürich, pp. 1–113, 1987.Google Scholar
  31. [31]
    Hutter, K., Plüss, Ch., Maeno, N.: Some implications deduced from laboratory experiments on granular avalanches. Mitteilung No. 94 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH, pp. 323–344, 1988.Google Scholar
  32. [32]
    Savage, S. B., Nohguchi, Y.: Similarity solutions for avalanches of granular materials down curved beds. Acta Mechanica75, 153–174 (1988).Google Scholar
  33. [33]
    Savage, S. B.: Symbolic computation of the flow of granular avalanches. J. Symbolic Computation9, 515–530 (1990).Google Scholar
  34. [34]
    Hungr, O., Morgenstern, N. R.: Experiments on the flow behaviour of granular materials at high velocity in an open channel flow. Geotechnique34, 305–413 (1984).Google Scholar
  35. [35]
    Roberts, A. W.: An investigation of the gravity flow of noncohesive granular materials through discharge chutes. ASME Trans., J. Eng. Ind.91, 373–381 (1969).Google Scholar
  36. [36]
    Savage, S. B.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech.92, 53–96 (1979).Google Scholar
  37. [37]
    Buggisch, H., Stadler, R.: On the relation between shear rate and stresses in one-dimensional steady flow of moist bulk solids. Proc. World Congress Particle Technology, Part III, pp. 187 to 202. Mechanics of Pneumatic and Hydraulic Conveying and Mixing, Nürnberg, 16–18 April 1986.Google Scholar
  38. [38]
    Stadler, R.: Stationäres, schnelles Fließen von dicht gepackten trockenen und feuchten Schüttgütern. Dr.-Ing. Dissertation, Univ. Karlsruhe, Karlsruhe, West Germany, 1986.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • S. B. Savage
    • 1
  • K. Hutter
    • 2
  1. 1.Laboratory of Hydraulics, Hydrology and GlaciologyFederal Institute of TechnologyZürichSwitzerland
  2. 2.Department of MechanicsTechnological InstituteDarmstadtFederal Republic of Germany

Personalised recommendations