, Volume 79, Issue 2, pp 137–157

Sex chromosome associated satellite DNA: Evolution and conservation

  • Lalji Singh
  • I. F. Purdom
  • K. W. Jones


Satellites visible in female but not in male DNA were isolated from the snakesElaphe radiata (satellite IV, p = 1.708 g · cm−3) andBungarus fasciatus (BK1 minor, p=1.709 g · cm−3). The satellites cross hybridize. Hybridization of3H labelled nick translated BK minor satellite DNA with the total male and female DNA and/or chromosomes in situ of different species of snakes revealed that its sequences are conserved throughout the snake group and are mainly concentrated on the W chromosome. Snakes lacking sex chromosomes do possess related sequences but there is no sex difference and visible related satellites are absent. The following conclusions have been reached on the basis of these results. 1. The W chromosome associated satellite DNA is related to similar sequences scattered in the genome. 2. The origin and increment in the number of the W satellite DNA sequence on the W chromosome is associated with the heterochromatinization of the W. 3. Satellite sequences have become distributed along the length of the W and resulted in morphological differentiation of sex chromosomes. 4. Evolutionary conservation of W satellite DNA strongly suggests that functional constraints may have limited sequence divergence.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birnstiel, M.L., Sells, B.H., Purdom, I.F.: Kinetic complexity of RNA molecules. J. molec. Biol.63, 21–39 (1972)CrossRefPubMedGoogle Scholar
  2. Bowen, S.T.: The genetics of Artemia salina. V. Crossing-over between the X and Y chromosomes. Genetics52, 695–710 (1965)PubMedGoogle Scholar
  3. Bull, J.J., Vogt, R.C.: Temperature-dependent sex determination in turtles. Science206, 1186–1188 (1979)PubMedGoogle Scholar
  4. Charlesworth, B.: Model for evolution of Y chromosomes and dosage compensation. Proc. nat. Acad. Sci. (Wash.)75, 5618–5622 (1978)Google Scholar
  5. Denhardt, D.T.: A membrane filter technique for the detection of complementary DNA. Biochem. biophys. Res. Comm.23, 641–646 (1966)PubMedGoogle Scholar
  6. Gillespie, D., Spiegelman, S.: A quantitative assay for DNA-RNA hybrids with DNA immobilised on a membrane. J. molec. Biol.12, 829–842 (1965)PubMedGoogle Scholar
  7. Gorman, G.C.: The chromosomes of the reptilia, a cytotaxonomic interpretation. In: Cytotaxonomy and vertebrate evolution (A.B. Chiarelli and E. Kapanna, eds.), pp. 350–424. New York: Academic Press 1973Google Scholar
  8. Jensen, R.H., Davidson, N.: Spectrophotometric, potentiometric and density gradient ultracentrifugation studies of the binding of silver ion by DNA. Biopolymers4, 17–32 (1966)Google Scholar
  9. Jones, K.W.: In situ hybridization. In: New technique in biophysics and cell biology (R.H. Pain and B.J. Smith, eds.), pp. 29–66, London: J. Wiley and Sons 1973Google Scholar
  10. Keyl, H.G.: Duplikationen von Untereinheiten der chromosomalen DNS während der Evolution von Chironomus thummi. Chromosoma (Berl.),17, 139–180 (1965)Google Scholar
  11. Maio, J.J., Brown, F.L., Musich, P.R.: Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA: Recurrent periodicities and models for the evolutionary origins of repetitive DNA. J. molec. Biol.117, 637–655 (1977)PubMedGoogle Scholar
  12. Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. molec. Biol.3, 208–218 (1961)Google Scholar
  13. Muller, H.J.: A gene for the fourth chromosome of Drosophila. J. exp. Zool.17, 325–336 (1914)Google Scholar
  14. Muller, H.J.: Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors. Genetics3, 422–499 (1918)Google Scholar
  15. Ohno, S.: Sex chromosomes and sex-linked genes. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  16. Ray-Chaudhuri, S.P., Singh, L.: DNA replication pattern in sex-chromosomes of snakes. Nucleus (Calcutta)15, 200–210 (1972)Google Scholar
  17. Ray-Chaudhuri, S.P., Singh, L., Sharma, T.: Sexual dimorphism in simatic interphase nuclei of snakes. Cytogenetics91, 410–423 (1970)Google Scholar
  18. Ray-Chaudhuri, S.P., Singh, L., Sharma, T.: Evolution of sex chromosomes and formation of W chromatin in snakes. Chromosoma (Berl.)33, 239–251 (1971)Google Scholar
  19. Rigby, P.W.J., Dieckmann, M., Rhodes, C., Berg, P.: Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. molec. Biol.113, 237–251 (1977)PubMedGoogle Scholar
  20. Salser, W., Bowen, S., Browne, D., El Adli, F., Fedoroff, N., Fry, K., Heindell, H., Paddock, G., Poon, R., Wallace, B., Whitcome, P.: Investigation of the organisation of mammalian chromosomes at the DNA sequence level. Fed. Proc.35, 23–35 (1976)PubMedGoogle Scholar
  21. Schmid, M., Olert, J., Klett, C.: Chromosome banding in Amphibia. III. Sex chromosomes in Triturus. Chromosoma (Berl.)71, 29–55 1979)Google Scholar
  22. Singh, L.: Evolution of karyotypes in snakes. Chromosoma (Berl.)38, 185–236 (1972 a)Google Scholar
  23. Singh, L.: Multiple W chromosome in a sea snake, Enhydrina schistosa Daudin. Experientia (Basel)28, 95–97 (1972 b)Google Scholar
  24. Singh, L.: Chromosomes of six species of Indian snakes. Herpetologica30, 419–429 (1974)Google Scholar
  25. Singh, L.: Study of mitotic and meiotic chromosomes in seven species of lizards. Proc. Zool. Soc. Calcutta27, 57–79 (1974)Google Scholar
  26. Singh, L., Sharma, T., Ray-Chaudhuri, S.P.: Chromosomes and the classification of snakes of the family Boidae. Cytogenetics7, 161–168 (1968 a)PubMedGoogle Scholar
  27. Singh, L., Sharma, T., Ray-Chaudhuri, S.P.: W chromosome in the Indian water snake (checkered keel back) Natrix piscator (Colubridae). Experientia (Basel)24, 79–80 (1968 b)Google Scholar
  28. Singh, L., Sharma, T., Ray-Chaudhuri, S.P.: Multiple sex-chromosomes in the common Indian krait, Bungarus caeruleus Schneider. Chromosoma (Berl.)31, 386–391 (1970)Google Scholar
  29. Singh, L., Purdom, I.F., Jones, K.W.: Satellite DNA and evolution of sex chromosomes. Chromosoma (Berl.)59, 43–62 (1976)Google Scholar
  30. Singh, L., Purdom, I.F., Jones, K.W.: Effect of different denaturing agents on the detectability of specific DNA sequences of various base compositions by in situ hybridization. Chromosoma (Berl.)60, 377–389 (1977)Google Scholar
  31. Singh, L., Purdom, I.F., Jones, K.W.: Behaviour of sex chromosome associated satellite DNAs in somatic and germ cells in snakes. Chromosoma (Berl.)71, 167–181 (1979 a)Google Scholar
  32. Singh, L., Ray-Chaudhuri, S.P., Majumdar, K., Purdom, I.F., Jones, K.W.: Sex specific chromosome polmorphisms in the common Indian krait, Bungarus caeruleus Schneider (Ophidia, Elapidae). Chromosoma (Berl.)73, 93–108 (1979 b)Google Scholar
  33. Smith, G.P.: Evolution of repeated DNA sequences by unequal cross-overs. Science191, 528–535 (1976)PubMedGoogle Scholar
  34. Sumner, A. T.: A simple technique for demonstrating contromeric heterochromatin. Exp. Cell Res.75, 304–306 (1972)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Lalji Singh
    • 1
  • I. F. Purdom
    • 1
  • K. W. Jones
    • 1
  1. 1.Institute of Animal GeneticsUniversity of EdinburghEdinburghScotland

Personalised recommendations