Advertisement

Mathematische Zeitschrift

, Volume 163, Issue 3, pp 251–259 | Cite as

Ranks of incidence matrices of Steiner triple systems

  • Jean Doyen
  • Xavier Hubaut
  • Monique Vandensavel
Article

Keywords

Triple System Steiner Triple System Incidence Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assmus, E. F. Jr.: Personal communicationGoogle Scholar
  2. 2.
    Cossu, A.: Su alcune proprietà dei {k, n}-archi di un piano proiettivo sopra un corpo finito.Rend. Mat. (5)20, 271–277 (1961).Google Scholar
  3. 3.
    Dehon, M.: Designs et hyperplans. J. Combinatorial Theory Ser. A23, 264–274 (1977).Google Scholar
  4. 4.
    Goethals, J. M., Delsarte, P.: On a class of majority logic decodable cyclic codes. IEEE Trans. Information Theory IT-14, 182–188 (1968)Google Scholar
  5. 5.
    Hall, M. Jr.: Automorphisms of Steiner triple systems. IBM J. Res. Develop.4, 460–472 (1960)Google Scholar
  6. 6.
    Hamada, N.: On thep-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes. Hiroshima Math. J.3, 153–226 (1973)Google Scholar
  7. 7.
    Kirkman, T. P.: On a problem in combinations. Cambridge and Dublin Math. J.2, 191–204 (1847)Google Scholar
  8. 8.
    Rudolph, L. D.: A class of majority logic decodable codes. IEEE Trans. Information Theory IT-13, 305–307 (1967)Google Scholar
  9. 9.
    Sachar, H. E.: Error-correcting codes associated with finite projective planes. Ph. D. Thesis, Lehigh University, Bethlehem, PA 1973Google Scholar
  10. 10.
    Smith, K. J. C.: Majority decodable codes derived from finite geometries. Institute of Statistics Mimeo series 561. Chapel Hill, NC: University of North Carolina 1967Google Scholar
  11. 11.
    Teirlinck, L.: Combinatorial structures. Ph. D. Thesis, University of Brussels, Brussels 1976Google Scholar
  12. 12.
    Teirlinck, L.: Planes and hyperplanes of 2-coverings. Bull. Soc. Math. Belg.29, 73–81 (1977)Google Scholar
  13. 13.
    Teirlinck, L.: On projective and affine hyperplanes. J. Combinatorial Theory (to appear)Google Scholar
  14. 14.
    Thas, J. A.: Some results concerning {(q+1)(n+1);n}-arcs and {(q+1)(n-1)+1;n}-arcs in finite projective planes of orderq. J. Combinatorial Theory19, 228–232 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Jean Doyen
    • 1
  • Xavier Hubaut
    • 1
  • Monique Vandensavel
    • 1
  1. 1.Département de MathématiqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations