Mathematische Zeitschrift

, Volume 186, Issue 3, pp 383–391

On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations

  • Philip Brenner
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brenner, P.: On weightedL p-L p-estimates for the Klein-Gordon equation, Report 1982-25. Department of Mathematics, Chalmers University of Technology and the University of Göteborg, SwedenGoogle Scholar
  2. 2.
    Brenner, P.: Scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, Report 1982-09 (revised). Department of Mathematics, Chalmers University of Technology and the University of Göteborg, SwedenGoogle Scholar
  3. 3.
    Glassey, R., Tsusumi, M.: On uniqueness of weak solutions to semilinear wave equations. Comm. Partial Differential Equations7, 153–195 (1982)Google Scholar
  4. 4.
    Marshall, B.: Mixed norm estimates for the Klein-Gordon equation. In: Proceedings of a Conference on Harmonic Analysis (Chicago 1981)Google Scholar
  5. 5.
    Pecher, H.: Nonlinear Small Data Scattering for the Wave and Klein-Gordon Equation. Math. Z.185, 261–270 (1984)Google Scholar
  6. 6.
    Segal, I.E.: Space-time decay for solutions of wave equations, Advances in Math.22, 302–311 (1976)Google Scholar
  7. 7.
    Strauss, W.A.: In Invariant Wave Equations (Erice 1977). Lecture Notes in Physics73, pp. 197–249. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  8. 8.
    Strauss, W.A.: Non-linear scattering theory at low energy. J. Funct. Anal.41, 110–133 (1981)Google Scholar
  9. 9.
    Strauss, W.A.: Mathematical aspects of classical nonlinear field equations. In: Nonlinear problems in theoretical physics (Jaca, Huesca 1978). Lecture Notes in Physics98, pp. 124–149. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  10. 10.
    Strauss, W.A.: Everywhere defined wave operators. In: Nonlinear Evolution Equations, pp. 85–102. New York: Academic Press 1978Google Scholar
  11. 11.
    Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J.44, 705–714 (1977)Google Scholar
  12. 12.
    Thomas, P.: A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc.81, 477–478 (1975)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Philip Brenner
    • 1
    • 2
  1. 1.Chalmers University of TechnologyGöteborgSweden
  2. 2.Department of MathematicsUniversity of GöteborgGöteborgSweden

Personalised recommendations